Advertisement

An Overview of 2D DIGE Analysis of Marine (Environmental) Bacteria

  • Ralf RabusEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 854)

Abstract

Microbes are the “unseen majority” of living organisms on Earth and main drivers of the biogeochemical cycles in marine and most other environments. Their significance for an intact biosphere is bringing environmental bacteria increasingly into the focus of genome-based science. Proteomics is playing a prominent role for providing a molecular understanding of how these microbes work and for identifying the key biocatalysts involved in the major biogeochemical processes. This overview describes the major insights obtained from two-dimensional difference gel electrophoresis (2D DIGE) analyses of specific degradation pathways, complex metabolic networks, cellular processes, and regulatory patterns in the marine aerobic heterotrophs Rhodopirellula baltica SH1 (Planctomycetes) and Phaeobacter gallaeciensis DSM 17395 (Roseobacter clade) and the anaerobic aromatic compound degrader Aromatoleum aromaticum EbN1 (Betaproteobacteria).

Key words

2D DIGE Anaerobic degradation Aromatic compounds Carbohydrates Catabolism Environmental bacteria Marine bacteria Metabolic networks Regulation 

References

  1. 1.
    Jørgensen BB, Boetius A (2007) Feast and famine – microbial life in the deep sea bed. Nature Rev Microbiol 5:770–781CrossRefGoogle Scholar
  2. 2.
    Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583PubMedCrossRefGoogle Scholar
  3. 3.
    Amann R, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  4. 4.
    Schloss PD, Handelsmann J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691PubMedCrossRefGoogle Scholar
  5. 5.
    Fry JC, Parkes RJ, Cragg BA et al (2008) Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 66:181–196PubMedCrossRefGoogle Scholar
  6. 6.
    Venter JC, Remington K, Heidelber JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74PubMedCrossRefGoogle Scholar
  7. 7.
    Yooseph S, Sutton G, Rusch DB et al (2007) The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLOS Biology 5:0432–0466CrossRefGoogle Scholar
  8. 8.
    Dinsdale EA, Edwards RA, Hall D et al (2008) Functional metagenomic profiling of nine biomes. Nature 452:629–632PubMedCrossRefGoogle Scholar
  9. 9.
    Huse SM, Dethlefsen L, Huber JA et al (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLOS Genetics 4:e1000255PubMedCrossRefGoogle Scholar
  10. 10.
    Hazen TC, Dubinsky EA, DeSantis TZ et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Scienceexpress  10.1126/science.1195979
  11. 11.
    Metzker ML (2010) Sequencing technologies – the next generation. Nature Rev Genet 11:31–46PubMedCrossRefGoogle Scholar
  12. 12.
    Falkowski PG, Fenchel T, DeLong EF (2008) The microbial engines that drive Earth´s biogeochemical cycles. Science 320:1034–1039PubMedCrossRefGoogle Scholar
  13. 13.
    Field CB, Behrenfeld MJ, Randerson JT et al (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240PubMedCrossRefGoogle Scholar
  14. 14.
    Dittmar T, Paeng J (2009) A heat-dissolved molecular signature in marine dissolved organic matter. Nature Geosci 2:175–179CrossRefGoogle Scholar
  15. 15.
    Jiao N, Herndl GJ, Hansell DA et al (2010) Microbial production of recalcitrant dissolved organic matter: long term carbon storage in the global ocean. Nature Rev Microbiol 8:593–599CrossRefGoogle Scholar
  16. 16.
    Jørgensen BB (1982) Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296:643–645CrossRefGoogle Scholar
  17. 17.
    Parales RE, Resnick SM (2006) Aromatic ring hydroxylating dioxygenases, p. 287–340. In: Ramos JL Levesque RC (eds.) Pseudomonas, vol. 4., Molecular biology of emerging issues. Springer, New YorkCrossRefGoogle Scholar
  18. 18.
    Vaillancourt FH, Bolin JT, Eltis LD (2006) The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol 41:241–267PubMedCrossRefGoogle Scholar
  19. 19.
    Heider J, Fuchs G (1997) Anaerobic metabolism of aromatic compound. Eur J Biochem 243:577–596PubMedCrossRefGoogle Scholar
  20. 20.
    Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276PubMedCrossRefGoogle Scholar
  21. 21.
    Gibson J, Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol 56:345–369PubMedCrossRefGoogle Scholar
  22. 22.
    Fuchs G (2008) Anaerobic metabolism of aromatic compounds. Ann NY Acad Sci 1125:82–99PubMedCrossRefGoogle Scholar
  23. 23.
    Giovannoni S, Stingl U (2007) The importance of culturing bacterioplankton in the “omics” age. Nature Rev Microbiol 5:820–826CrossRefGoogle Scholar
  24. 24.
    Strittmatter AW, Liesegang H, Rabus R et al (2009) Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. Environ Microbiol 11:1038–1055PubMedCrossRefGoogle Scholar
  25. 25.
    Rabus R, Kube M, Heider J et al. (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 183:27–36PubMedCrossRefGoogle Scholar
  26. 26.
    Liolios K, Chen IMA, Mavromatis K et al (2010) The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 38:D346–D354PubMedCrossRefGoogle Scholar
  27. 27.
    Wu D, Hugenholtz P, Mavromatis K et al (2009) A phylogeny-driven genomic encyclopedia of Bacteria and Archaea. Nature 462:1056–1060PubMedCrossRefGoogle Scholar
  28. 28.
    Hufnagel P, Rabus R (2006) Mass spectrometric identification of proteins in complex post-genomic projects. Soluble proteins of the metabolically versatile, denitrifying ‘Aromatoleum’ sp. strain EbN1. J Mol Microbiol Biotechnol 11:53–81PubMedCrossRefGoogle Scholar
  29. 29.
    Ünlü M, Morgan M, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077PubMedCrossRefGoogle Scholar
  30. 30.
    Gade D, Thiermann J, Markowsky D et al (2003) Evaluation of two-dimensional difference gel electrophoresis for protein profiling. Soluble proteins of the marine bacterium Pirellula sp. strain 1. J Mol Microbiol Biotechnol 5:240–251PubMedCrossRefGoogle Scholar
  31. 31.
    Rabus R, Trautwein K (2010) Proteogenomics to study the anaerobic degradation of aromatic compounds and hydrocarbons. In: KN Timmis (ed.), Handbook of Hydrocarbon and Lipid Metabolism. Springer-Verlag Berlin, DOI 10.1007/978-3-540-77587-4_344Google Scholar
  32. 32.
    Görg A, Drews O, Lück C et al (2009) 2DE with IPGs. Electrophoresis 30:122–132CrossRefGoogle Scholar
  33. 33.
    Zech H, Echtermeyer C, Wöhlbrand L, Blasius B, Rabus R (2011) Biological versus technical variability in 2D-DIGE experiments with environmental bacteria. Proteomics 11: 3380–3389PubMedCrossRefGoogle Scholar
  34. 34.
    Fuerst JA (1995) The planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiology 141:1493–1506PubMedCrossRefGoogle Scholar
  35. 35.
    Fuerst JA (2005) Intracellular compartmentation in Planctomycetes. Annu Rev Microbiol 59:299–328PubMedCrossRefGoogle Scholar
  36. 36.
    Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249PubMedCrossRefGoogle Scholar
  37. 37.
    Schlesner H, Rensmann C, Tindall BJ et al (2004) Taxonomic heterogeneity within the Planctomycetales as derived by DNA-DNA hybridization, description of Rhodopirellula baltica gen. nov., sp. nov., transfer of Pirellula marina to the genus Blastopirellula gen. nov. as Blastopirellula marina comb. nov. and emended description of the genus Pirellula. Int J Syst Evol Microbiol 54:1567–1580PubMedCrossRefGoogle Scholar
  38. 38.
    Glöckner FO, Kube M, Bauer M et al (2004) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100:8293–8303Google Scholar
  39. 39.
    Rabus R, Gade D, Helbig R et al (2002) Analysis of N-acetylglucosamine metabolism in the marine bacterium Pirellula sp. strain 1 by a proteomic approach. Proteomics 2:649–655PubMedCrossRefGoogle Scholar
  40. 40.
    Gade D, Theiss D, Lange D et al (2005) Towards the proteome of the marine bacterium Rhodopirellula baltica: mapping the soluble proteins. Proteomics 5:3654–3671PubMedCrossRefGoogle Scholar
  41. 41.
    Gade D, Gobom J, Rabus R (2005) Proteomic analysis of carbohydrate catabolism and regulation in the marine bacterium Rhodopirellula baltica. Proteomics 5:3672–3683PubMedCrossRefGoogle Scholar
  42. 42.
    Gade D, Stührmann T, Reinhardt R et al (2005) Proteomic analysis of growth stages and morphotypes in the marine bacterium Rhodopirellula baltica. Environ Microbiol 7:1074–1084PubMedCrossRefGoogle Scholar
  43. 43.
    Buchan A, González JM, Moran MA (2005) Overview of the marine roseobacter lineage. Appl Environ Microbiol 71:5665–5677PubMedCrossRefGoogle Scholar
  44. 44.
    Wagner-Döbler I, Biebl H (2006) Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60:255–280PubMedCrossRefGoogle Scholar
  45. 45.
    Brinkhoff T, Giebel HA, Simon M (2008) Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189:531–539PubMedCrossRefGoogle Scholar
  46. 46.
    Newton RJ, Griffin LE, Bowles KM et al (2010) Genome characteristics of a generalist marine bacterial lineage. ISME J 4:784–798PubMedCrossRefGoogle Scholar
  47. 47.
    Martens T, Heidorn T, Pukall R et al (2006) Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 56:1293–304PubMedCrossRefGoogle Scholar
  48. 48.
    Zech H, Thole S, Schreiber K et al (2009) Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. Proteomics 9:3677–3697PubMedCrossRefGoogle Scholar
  49. 49.
    Fürch T, Preusse M, Tomasch J et al (2009) Metabolic fluxes in the central carbon metabolism of Dinoroseobacter shibae and Phaeobacter gallaeciensis, two members of the marine Roseobacter clade. BMC Microbiol 9:209PubMedCrossRefGoogle Scholar
  50. 50.
    Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103PubMedCrossRefGoogle Scholar
  51. 51.
    Rabus R, Wilkes H, Schramm A et al (1999) Anaerobic utilization of alkylbenzenes and n-alkanes from crude oil in an enrichment culture of denitrifying bacteria affiliating with the β-subclass of Proteobacteria. Environ Microbiol 1:145–157PubMedCrossRefGoogle Scholar
  52. 52.
    Champion KM, Zengler K, Rabus R (1999) Anaerobic degradation of ethylbenzene and toluene in denitrifying strain EbN1 proceeds via independent substrate-induced pathways. J Mol Microbiol Biotechnol 1:157–164PubMedGoogle Scholar
  53. 53.
    Rabus R, Kube M, Beck A et al (2002) Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol 178:506–516PubMedCrossRefGoogle Scholar
  54. 54.
    Kube M, Heider J, Hufnagel P et al (2004) Genes involved in the anaerobic degradation of toluene in a denitrifying bacterium, strain EbN1. Arch Microbiol 181:182–184PubMedCrossRefGoogle Scholar
  55. 55.
    Kühner S, Wöhlbrand L, Hufnagel P et al (2005) Substrate-dependent regulation of anaerobic ethylbenzene and toluene metabolism in a denitrifying bacterium, strain EbN1. J Bacteriol 187:1493–1503PubMedCrossRefGoogle Scholar
  56. 56.
    Wöhlbrand L, Wilkes H, Halder T et al (2008) Anaerobic degradation of p-ethylphenol by “Aromatoleum aromaticum” strain EbN1: pathway, involved proteins and regulation. J Bacteriol 190:5699–5709PubMedCrossRefGoogle Scholar
  57. 57.
    Wöhlbrand L, Kallerhoff B, Lange D et al (2007) Functional proteomic view of metabolic regulation in “Aromatoleum aromaticum” strain EbN1. Proteomics 7:2222–2239PubMedCrossRefGoogle Scholar
  58. 58.
    Trautwein K, Kühner S, Halder T et al (2008) Solvent stress response of the denitrifying strain EbN1. Appl Environ Microbiol 74:2267–2274PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Biology and Chemistry of the Marine Environment (ICBM)University OldenburgOldenburgGermany
  2. 2.Max Planck Institute for Marine MicrobiologyBremenGermany

Personalised recommendations