Skip to main content

TopDown Real-Time Gene Synthesis

  • Protocol
  • First Online:
Gene Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 852))

Abstract

This chapter introduces a simple, cost-effective TopDown one-step gene synthesis method, which is suitable for the sequence assembly of fairly long DNA. This method can be distinguished from conventional gene synthesis methods by two key features: (1) the melting temperature of the outer primers is designed to be ∼8°C lower than that of the assembly oligonucleotides, and (2) different annealing temperatures are utilized to selectively control the efficiencies of oligonucleotide assembly and full-length template amplification. This method eliminates the interference between polymerase chain reactions (PCR) assembly and amplification in one-step gene synthesis. Additionally, the TopDown gene synthesis has been combined with the LCGreen I DNA fluorescence dye in a real-time gene synthesis approach for investigating the stepwise efficiency and kinetics of PCR-based gene synthesis. The obtained real-time fluorescence signals are compared with gel electrophoresis results to optimize gene synthesis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He M, Stoevesandt O, Palmer EA, Khan F, Ericsson O, and Taussig MJ (2008) Printing protein arrays from DNA arrays. Nat. Methods 5:175–177.

    Article  PubMed  CAS  Google Scholar 

  2. Cox JC, Lape J, Sayed MA and Hellinga HW (2007) Protein fabrication automation. Protein Sc. 16:379–390.

    Article  CAS  Google Scholar 

  3. Sprinzak D, and Elowitz MB (2005) Reconstruction of genetic circuits. Nature 438:443–448.

    Article  PubMed  CAS  Google Scholar 

  4. Basu S, Gerchman Y, Collins,CH. Arnold,FH and Weiss RA (2005) Synthetic multicellular system for programmed pattern formation. Nature 434:1130–1134.

    Google Scholar 

  5. Smith HO, Hutchison CA III, Pfannkoch C and Venter JC (2003) Generating a synthetic genome by whole genome assembly: ΦX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA 100:15440–15445.

    Article  PubMed  CAS  Google Scholar 

  6. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA.III and Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220.

    Article  PubMed  CAS  Google Scholar 

  7. Au LC, Yang FY, Yang WJ, Lo SH and Kao,CF (1998) Gene synthesis by a LCR-based approach: High-level production of leptin-L54 using synthetic gene in Escherichia coli. Biochem Biophys Res.Commun 248:200–203.

    Article  PubMed  CAS  Google Scholar 

  8. Stemmer WP, Crameri A, Ha KD, Brennan TM and Heyneker HL (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164:49–53.

    Article  PubMed  CAS  Google Scholar 

  9. Gao X, Yo P, Keith A, Ragan TJ and Harris TK (2003) Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis: A novel method of primer design for high-fidelity assembly of longer gene sequences. Nucleic Acids Res 31:,e143.

    Article  PubMed  Google Scholar 

  10. Xiong A-S, Yao Q-H, Peng R-H, Li X, Fan H-Q, Cheng Z-M and Li Y (2004) A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res 32:e98.

    Article  PubMed  Google Scholar 

  11. Sandhu GS, Aleff RA and Kline, BC (1992) Dual asymmetric PCR: One-step construction of synthetic genes. Biotechniques 12:14–16.

    PubMed  CAS  Google Scholar 

  12. Toung L and Dong,Q.(2004) Two-step total gene synthesis method. Nucleic Acids Res 32:e59.

    Article  Google Scholar 

  13. Prodromou C and Pearl L (1992) Recursive PCR: A novel technique for total gene synthesis. Protein Eng 5:827–829.

    Article  PubMed  CAS  Google Scholar 

  14. Xiong A-S, Yao Q-H, Peng R-H, Duan H, Li X, Fan H-Q, Cheng Z-M and Li Y (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1:791–797.

    Article  PubMed  CAS  Google Scholar 

  15. Wu G, Wolf JB, Ibrahim AF, Vadasz S, Gunasinghe M and Freeland SJ (2006) Simplified gene synthesis: A one-step approach to PCR-based gene construction. J. Biotechnol 124: 496–503.

    Article  PubMed  CAS  Google Scholar 

  16. Ye H, Huang MC, Li M-H and Ying JY (2009) Experimental analysis of gene assembly with TopDown one-step real-time gene synthesis. Nucleic Acids Res 37:e51.

    Article  PubMed  Google Scholar 

  17. Hoover DM and Lubkowski J (2002) DNAWorks: An automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res 30:e43.

    Article  PubMed  Google Scholar 

  18. Bode M, Khor,S, Ye H, Li M-H and Ying JY (2009) TmPrime: fast, flexible oligonucleotide design software for gene synthesis. Nucleic Acids Res 37:W214–W221.

    Article  PubMed  CAS  Google Scholar 

  19. Bang D and Church GM (2008) Gene synthesis by circular assembly amplification. Nat Methods 5:37–39.

    Article  PubMed  CAS  Google Scholar 

  20. Owczarzy R. Tataurov AV, Wu,Y, Manthey,JA, McQuisten KA, Almabrazi HG et al. (2008) IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res 36:W163–W169.

    Article  PubMed  CAS  Google Scholar 

  21. Ely JJ, Reeves-Daniel A, Campbell ML, Kohler S and Stone WH (1998) Influence of magnesium ion concentration and PCR amplification conditions on cross-species PCR. Biotechniques 25:38–40.

    PubMed  CAS  Google Scholar 

  22. von Ahsen N, Wittwer CT and Schütz E. (2001) Oligonucleotide melting temperatures under PCR conditions: Nearest-neighbor corrections for Mg2+, deoxynucleotide triphosphate, and dimethyl sulfoxide concentrations with comparison to alternative empirical formulas. Clin Chem 47:1956–1961.

    Google Scholar 

  23. Wittwer CT, Reed GH, Gundry,CN, Vandersteen JG and Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860.

    Article  PubMed  CAS  Google Scholar 

  24. Giglio S, Monis PT and Saint CP (2003) Demonstration of preferential binding of SYBR Green I to specific DNA fragments in real-time multiplex PCR. Nucleic Acids Res.31:e136.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo-Huang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Sceince+Business Media, LLC

About this protocol

Cite this protocol

Huang, M.C., Cheong, W.C., Ye, H., Li, MH. (2012). TopDown Real-Time Gene Synthesis. In: Peccoud, J. (eds) Gene Synthesis. Methods in Molecular Biology, vol 852. Humana Press. https://doi.org/10.1007/978-1-61779-564-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-564-0_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-563-3

  • Online ISBN: 978-1-61779-564-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics