Skip to main content

Investigating Fibrillar Aggregates of Tau Protein by Atomic Force Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 849))

Abstract

Atomic force microscopy (AFM) has been used in numerous studies to visualize and analyze the structure and conformation of biological samples, from single molecules to biopolymers to cells. The possibility to analyze native samples without fixation, staining and in physiological buffer conditions, combined with the sub-nanometer resolution, makes AFM a versatile tool for the analysis of protein aggregation and amyloid structures. Here, we describe the application of AFM to study fibrillar Tau protein aggregates.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sipe, J. D., Cohen, A. S. (2000) Review: history of the amyloid fibril. J. Struct. Biol. 130, 88–98.

    Article  PubMed  CAS  Google Scholar 

  2. Virchow, R. (1854) Ueber eine im Gehirn und Rückenmark des Menschen aufgefundene Substanz mit der chemischen Reaction der Cellulose. Virchow Arch. Path. Anat. Phys. 6, 135–138.

    Article  Google Scholar 

  3. Elghetany, M. T., Saleem, A. (1988) Methods for staining amyloid in tissues: a review. Stain Technol. 63, 201–212.

    PubMed  CAS  Google Scholar 

  4. Picken, M. M. (2010) Amyloidosis-where are we now and where are we heading? Arch. Pathol. Lab. Med. 134, 545–551.

    PubMed  Google Scholar 

  5. Alzheimer, A. (1907) Ueber eine eigenartige Erkrankung der Hirnrinde. Allg. Zeitschrift f. Psychiatrie u. Psychisch-gerichtliche Medizin 64, 146–148.

    Google Scholar 

  6. Antzutkin, O. N., Leapman, R. D., Balbach, J. J. and Tycko, R. (2002) Supramolecular structural constraints on Alzheimer’s beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance. Biochemistry 41, 15436–15450.

    Article  PubMed  CAS  Google Scholar 

  7. Eanes, E. D., Glenner, G. G. (1968) X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 16, 673–677.

    Article  PubMed  CAS  Google Scholar 

  8. Luhrs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Döbeli, H., Schubert, D., Riek, R. (2005) 3D structure of Alzheimer’s amyloid-beta(1–42) fibrils. Proc. Natl. Acad. Sci. USA 102, 17342–17347.

    Article  PubMed  CAS  Google Scholar 

  9. Nelson, R., Sawaya, M. R., Balbirnie, M., Madsen, A. Ø., Riekel, C., Grothe, R., Eisenberg, D. (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435, 773–778.

    Article  PubMed  CAS  Google Scholar 

  10. Serpell L. C. (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta 1502, 16–30.

    PubMed  CAS  Google Scholar 

  11. Glenner, G. G., Eanes, E. D., Bladen, H. A., Linke R. P., Termine, J. D. (1974) Beta-pleated sheet fibrils. A comparison of native amyloid with synthetic protein fibrils. J. Histochem. Cytochem. 22, 1141–1158.

    Article  PubMed  CAS  Google Scholar 

  12. Schweers, O., Schonbrunn-Hanebeck, E., Marx, A., Mandelkow, E. (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J. Biol. Chem. 269, 24290–24297.

    PubMed  CAS  Google Scholar 

  13. von Bergen, M., Friedhoff, P., Biernat, J., Heberle, J., Mandelkow, E. M., Mandelkow, E. (2000) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc. Natl. Acad. Sci. USA 97, 5129–5134.

    Article  Google Scholar 

  14. Barghorn, S., Davies, P., Mandelkow, E. (2004) Tau paired helical filaments from Alzheimer’s disease brain and assembled in vitro are based on beta-structure in the core domain. Biochemistry 43, 1694–1703.

    Article  PubMed  CAS  Google Scholar 

  15. Berriman, J., Serpell, L. C., Oberg, K. A., Fink, A. L., Goedert, M., Crowther, R. A. (2003) Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc. Natl. Acad. Sci. USA 100, 9034–9038.

    Article  PubMed  CAS  Google Scholar 

  16. Mukrasch, M. D., Bibow, S., Korukottu, J., Jeganathan, S., Biernat, J., Griesinger, C., Mandelkow, E., Zweckstetter, M. (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol. 7, e34.

    Article  PubMed  Google Scholar 

  17. Kidd, M. (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197, 192–193.

    Article  PubMed  CAS  Google Scholar 

  18. Crowther, R. A. (1991) Straight and paired helical filaments in Alzheimer disease have a common structural unit. Proc. Natl. Acad. Sci. USA 88, 2288–2292.

    Article  PubMed  CAS  Google Scholar 

  19. Ksiezak-Reding, H., Wall, J. S. (2005) Characterization of paired helical filaments by scanning transmission electron microscopy. Microsc. Res. Tech. 67, 126–140.

    Article  PubMed  CAS  Google Scholar 

  20. Moreno-Herrero, F., Valpuesta, J. M., Perez, M., Colchero, J., Barö, A. M., Avila, J., Montejo De Garcini, E. (2001) Characterization by atomic force microscopy and cryoelectron microscopy of tau polymers assembled in Alzheimer’s disease. J. Alzheimers Dis. 3, 443–451.

    PubMed  CAS  Google Scholar 

  21. Pollanen, M. S., Markiewicz, P., Bergeron, C., Goh, M. C. (1994) Twisted ribbon structure of paired helical filaments revealed by atomic force microscopy. Am. J. Pathol. 144, 869–873.

    PubMed  CAS  Google Scholar 

  22. Pollanen, M. S., Markiewicz, P., Goh, M. C. (1997) Paired helical filaments are twisted ribbons composed of two parallel and aligned components: image reconstruction and modeling of filament structure using atomic force microscopy. J. Neuropathol. Exp. Neurol. 56, 79–85.

    Article  PubMed  CAS  Google Scholar 

  23. Binnig, G., Quate, C. F., Gerber, C. (1986) Atomic force microscope. Phys Rev Lett. 56, 930–933.

    Article  PubMed  Google Scholar 

  24. Hansma, H. G., Bezanilla, M., Zenhausern, F., Adrian, M., Sinsheimer, R. L. (1993) Atomic force microscopy of DNA in aqueous solutions. Nucleic Acids Res. 21, 505–512.

    Article  PubMed  CAS  Google Scholar 

  25. Guthold, M., Bezanilla, M., Erie, D. A., Jenkins, B., Hansma, H. G., Bustamante, C. (1994) Following the assembly of RNA polymerase-DNA complexes in aqueous solutions with the scanning force microscope. Proc. Natl. Acad. Sci. USA 91, 12927–12931.

    Article  PubMed  CAS  Google Scholar 

  26. Engel, A., Schoenenberger, C. A., Muller, D. J. (1997) High resolution imaging of native biological sample surfaces using scanning probe microscopy. Curr. Opin. Struct. Biol. 7, 279–284.

    Article  PubMed  CAS  Google Scholar 

  27. Muller, D. J., Schabert, F. A., Buldt, G., Engel, A. (1995) Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys. J. 68, 1681–1686.

    Article  PubMed  CAS  Google Scholar 

  28. Yu, J., Bippes, C. A., Hand, G. M., Muller, D. J., Sosinsky, G. E. (2007) Aminosulfonate modulated pH-induced conformational changes in connexin26 hemichannels. J. Biol. Chem. 282, 8895–8904.

    Article  PubMed  CAS  Google Scholar 

  29. Franz, C. M., Muller, D. J. (2005) Analyzing focal adhesion structure by atomic force microscopy. J. Cell. Sci. 118, 5315–5323.

    Article  PubMed  CAS  Google Scholar 

  30. Wegmann, S., Miesbauer, M., Winklhofer, K. F., Tatzelt, J., Muller, D. J. (2008) Observing fibrillar assemblies on scrapie-infected cells. Pflugers Arch. 456, 83–93.

    Article  PubMed  CAS  Google Scholar 

  31. Liu, S., Wang, Y. (2010) Application of AFM in microbiology: a review. Scanning 32, 61–73.

    Article  PubMed  CAS  Google Scholar 

  32. Harper, J. D., Lieber, C. M., Lansbury, P. T., Jr. (1997) Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-beta protein. Chem. Biol. 4, 951–959.

    Article  PubMed  CAS  Google Scholar 

  33. Conway, K. A., Harper, J. D., Lansbury, P. T., Jr. (2000) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39, 2552–2563.

    Article  PubMed  CAS  Google Scholar 

  34. Anderson, M., Bocharova, O. V., Makarava, N., Breydo, L., Salnikov, V. V., Baskakov, I. V. (2006) Polymorphism and ultrastructural organization of prion protein amyloid fibrils: an insight from high resolution atomic force microscopy. J. Mol. Biol. 358, 580–596.

    Article  PubMed  CAS  Google Scholar 

  35. Moreno-Herrero, F., Perez, M., Baro, A. M., Avila, J. (2004) Characterization by atomic force microscopy of Alzheimer paired helical filaments under physiological conditions. Biophys. J. 86, 517–525.

    Article  PubMed  CAS  Google Scholar 

  36. Frost, B., Ollesch, J., Wille, H., Diamond, M. I. (2009) Conformational diversity of wild-type Tau fibrils specified by templated conformation change. J. Biol. Chem. 284, 3546–3551.

    Article  PubMed  CAS  Google Scholar 

  37. Wegmann, S., Jung, Y. J., Chinnathambi, S., Mandelkow, E. M., Mandelkow, E., Muller, D. J. (2010) Human Tau isoforms assemble into ribbon-like fibrils that display polymorphic structure and stability. J. Biol. Chem. 285, 27302–27313.

    Article  PubMed  CAS  Google Scholar 

  38. Ruben, G. C., Novak, M., Edwards, P. C., Iqbal, K. (2005) Alzheimer paired helical filaments (PHFs) studied by high-resolution TEM: what can vertical Pt-C replication tell us about the organization of the pronase-digested PHF core? Microsc. Res. Tech. 67, 196–209.

    Article  PubMed  CAS  Google Scholar 

  39. Wischik, C. M., Novak, M., Edwards, P. C., Klug, A., Tichelaar, W., Crowther, R. A. (1988) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc. Natl. Acad. Sci. USA 85, 4884–4888.

    Article  PubMed  CAS  Google Scholar 

  40. Pollanen, M. S., Markiewicz, P., Goh, M. C., Bergeron, C. (1995) Alzheimer paired helical filaments: a comparison with the twisted ribbon model. Acta Neuropathol. 90, 194–197.

    Article  PubMed  CAS  Google Scholar 

  41. von Bergen, M., Barghorn, S., Biernat J., Mandelkow, E. M., Mandelkow, E. (2005) Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim. Biophys. Acta 1739, 158–166.

    Google Scholar 

  42. Elie-Caille, C., Severin, F., Helenius, J., Howard, J., Muller, D. J., Hyman, A. A. (2007) Straight GDP-tubulin protofilaments form in the presence of taxol. Curr. Biol. 17, 1765–1770.

    Article  PubMed  CAS  Google Scholar 

  43. Erler, A., Wegmann, S., Elie-Caille, C., Bradshaw, C. R., Maresca, M., Seidel, R., Habermann, B., Muller, D. J., Stewart, A. F. (2009) Conformational adaptability of Redbeta during DNA annealing and implications for its structural relationship with Rad52. J. Mol. Biol. 391, 586–598.

    Article  PubMed  CAS  Google Scholar 

  44. Barghorn, S., Biernat, J., Mandelkow, E. (2005) Purification of recombinant tau protein and preparation of Alzheimer-paired helical filaments in vitro. Methods Mol. Biol. 299, 35–51.

    PubMed  CAS  Google Scholar 

  45. Hopwood, D. (1972) Theoretical and practical aspects of glutaraldehyde fixation. Histochem. J. 4, 267–303.

    Article  PubMed  CAS  Google Scholar 

  46. Nakanishi, K., Sakiyama, T., Imamura, K. (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J. Biosci. Bioeng. 91, 233–244.

    PubMed  CAS  Google Scholar 

  47. Tadmor, R., Hernandez-Zapata, E., Chen, N., Pincus,P., Israelachvili, J. (2002) Debye Length and Double-Layer Forces in Polyelectrolyte Solutions. Macromolecules 35, 2380–2388.

    Article  CAS  Google Scholar 

  48. Ricci, D., Braga, P. C. (2004) Recognizing and avoiding artifacts in AFM imaging. Methods Mol. Biol. 242, 25–37.

    PubMed  Google Scholar 

  49. Muller, D. J., Fotiadis, D., Scheuring, S., Müller, S. A., Engel, A. (1999) Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys. J. 76, 1101–1111.

    Article  PubMed  CAS  Google Scholar 

  50. Butt, H. J. (1991) Electrostatic interaction in atomic force microscopy. Biophys. J. 60, 777–785.

    Article  PubMed  CAS  Google Scholar 

  51. Muller, D. J., Engel, A. (1997) The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys. J. 73, 1633–1644.

    Article  PubMed  CAS  Google Scholar 

  52. Das, S., Sreeram, P. A., Raychaudhuri, A. K. (2007) Effects of nonlinear forces on dynamic mode atomic force microscopy and spectroscopy. J. Nanosci. Nanotechnol. 7, 2167–2171.

    Article  PubMed  CAS  Google Scholar 

  53. Legleiter, J. (2009) The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment. Nanotechnology 20, 245703.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Max-Planck-Society (program on “Toxic Protein Conformation,” to DM and EM), the Volkswagen Foundation (program “Conformation of Biological Molecules,” to EM), the BMBF program on Degenerative Diseases (KNDD, to EM), and the Deutsche Forschungsgemeinschaft (GK1401 at TU Dresden, to DM and SW). We are grateful to Eva-Maria Mandelkow and Subash Chinnathambi for their advice and contributions to Tau biochemistry and aggregation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Mandelkow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wegmann, S., Muller, D.J., Mandelkow, E. (2012). Investigating Fibrillar Aggregates of Tau Protein by Atomic Force Microscopy. In: Sigurdsson, E., Calero, M., Gasset, M. (eds) Amyloid Proteins. Methods in Molecular Biology, vol 849. Humana Press. https://doi.org/10.1007/978-1-61779-551-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-551-0_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-550-3

  • Online ISBN: 978-1-61779-551-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics