Regulation of Focal Adhesion Dynamics by Wnt5a Signaling

  • Shinji Matsumoto
  • Akira KikuchiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 839)


Wnt5a is a representative ligand that activates the β-catenin-independent pathway of Wnt signaling in mammals. This pathway might be related to planar cell polarity signaling in Drosophila. Because reliable biochemical assays to measure Wnt5a pathway activity have not yet been established, we examined whether Wnt5a signaling stimulates focal adhesion turnover in migrating cells using live immunofluorescence imaging and immunocytochemical analysis. These assays demonstrated that the Wnt5a pathway cooperates with integrin signaling to regulate cell migration and adhesion through focal adhesion dynamics.

Key words

Wnt5a Focal adhesion Dvl PCP Migration Integrin 



We thank Nature Publishing Group and Portland Press Ltd for permitting the use of original figures. Financial support was provided by Grants-in-Aid for Scientific Research and for Scientific Research on Priority Areas from the Ministry of Education, Science, and Culture of Japan (2008, 2009, 2010), and by Research Grants from the Princess Takamatsu Cancer Research Fund (08-24005) and Takeda Science Foundation (2009).


  1. 1.
    Adler, P. N. (2002) Planar signaling and morphogenesis in Drosophila. Dev Cell 2, 525–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Axelrod, J. D. (2009) Progress and challenges in understanding planar cell polarity signaling. Semin Cell Dev Biol 20, 964–71.PubMedCrossRefGoogle Scholar
  3. 3.
    Veeman, M. T., Axelrod, J. D., and Moon, R. T. (2003) A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell 5, 367–77.PubMedCrossRefGoogle Scholar
  4. 4.
    Wu, J., and Mlodzik, M. (2009) A quest for the mechanism regulating global planar cell polarity of tissues. Trends Cell Biol 19, 295–305.PubMedCrossRefGoogle Scholar
  5. 5.
    Cadigan, K. M., and Nusse, R. (1997) Wnt signaling: a common theme in animal development. Genes Dev 11, 3286–305.PubMedCrossRefGoogle Scholar
  6. 6.
    Logan, C. Y., and Nusse, R. (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20, 781–810.PubMedCrossRefGoogle Scholar
  7. 7.
    Kikuchi, A., Yamamoto, H., and Sato, A. (2009) Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol 19, 119–29.PubMedCrossRefGoogle Scholar
  8. 8.
    Strutt, D. I., Weber, U., and Mlodzik, M. (1997) The role of RhoA in tissue polarity and Frizzled signalling. Nature 387, 292–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Winter, C. G., Wang, B., Ballew, A., et al. (2001) Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 105, 81–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Wharton, K. A. J. (2003) Runnin’ with the Dvl: proteins that associate with Dsh/Dvl and their significance to Wnt signal transduction. Dev Biol 253, 1–17.PubMedCrossRefGoogle Scholar
  11. 11.
    Du, S. J., Purcell, S. M., Christian, J. L., McGrew, L. L., and Moon, R. T. (1995) Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol Cell Biol 15, 2625–34.PubMedGoogle Scholar
  12. 12.
    Moon, R. T., Campbell, R. M., Christian, J. L., McGrew, L. L., Shih, J., and Fraser, S. (1993) Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development 119, 97–111.PubMedGoogle Scholar
  13. 13.
    Heisenberg, C. P., Tada, M., Rauch, G. J., et al. (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Rauch, G. J., Hammerschmidt, M., Blader, P., et al. (1997) Wnt5 is required for tail formation in the zebrafish embryo. Cold Spring Harb Symp Quant Biol 62, 227–34.PubMedGoogle Scholar
  15. 15.
    Kikuchi, A., and Yamamoto, H. (2008) Tumor formation due to abnormalities in the β-catenin-independent pathway of Wnt signaling. Cancer Sci 99, 202–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Kurayoshi, M., Oue, N., Yamamoto, H., et al. (2006) Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res 66, 10439–48.PubMedCrossRefGoogle Scholar
  17. 17.
    Kurayoshi, M., Yamamoto, H., Izumi, S., and Kikuchi, A. (2007) Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem J 402, 515–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Yamamoto, H., Kitadai, Y., Oue, N., Ohdan, H., Yasui, W., and Kikuchi, A. (2009) Laminin γ2 mediates Wnt5a-induced invasion of gastric cancer cells. Gastroenterology 137, 242–52, 52 e1–6.Google Scholar
  19. 19.
    Matsumoto, S., Fumoto, K., Okamoto, T., Kaibuchi, K., and Kikuchi, A. (2010) Binding of APC and dishevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells. Embo J 29, 1192–204.PubMedCrossRefGoogle Scholar
  20. 20.
    Small, J. V., and Kaverina, I. (2003) Microtubules meet substrate adhesions to arrange cell polarity. Curr Opin Cell Biol 15, 40–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Mitra, S. K., Hanson, D. A., and Schlaepfer, D. D. (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6, 56–68.PubMedCrossRefGoogle Scholar
  22. 22.
    Carragher, N. O., and Frame, M. C. (2004) Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol 14, 241–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Ridley, A. J., Schwartz, M. A., Burridge, K., et al. (2003) Cell migration: integrating signals from front to back. Science 302, 1704–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Legate, K. R., Wickstrom, S. A., and Fassler, R. (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 23, 397–418.PubMedCrossRefGoogle Scholar
  25. 25.
    Wozniak, M. A., Modzelewska, K., Kwong, L., and Keely, P. J. (2004) Focal adhesion regulation of cell behavior. Biochim Biophys Acta 1692, 103–19.PubMedCrossRefGoogle Scholar
  26. 26.
    Schaller, M. D., Hildebrand, J. D., Shannon, J. D., Fox, J. W., Vines, R. R., and Parsons, J. T. (1994) Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 14, 1680–8.PubMedGoogle Scholar
  27. 27.
    Bellis, S. L., Perrotta, J. A., Curtis, M. S., and Turner, C. E. (1997) Adhesion of fibroblasts to fibronectin stimulates both serine and tyrosine phosphorylation of paxillin. Biochem J 325 (Pt 2), 375–81.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Molecular Biology & Biochemistry, Graduate School of Medicine, Faculty of MedicineOsaka UniversityOsakaJapan

Personalised recommendations