Examining Planar Cell Polarity in the Mammalian Cochlea

  • Helen May-SimeraEmail author
  • Matthew W. Kelley
Part of the Methods in Molecular Biology book series (MIMB, volume 839)


The mammalian cochlea offers a unique opportunity to study the effects of planar cell polarity signaling during vertebrate development. First, convergence and extension play a role in outgrowth and cellular patterning within the duct, and second, hair cell stereociliary bundles are uniformly oriented towards the lateral edge of the duct. Defects in convergence and extension are manifested as a shortening of the cochlea duct and/or changes in cellular patterning, which can be quantified following dissection from mouse mutants or observed directly using an in vitro outgrowth assay. Changes in stereociliary bundle orientation can be observed and quantitated using either fluorescent tags or scanning electron microscopy (SEM) to visualize individual bundles. The high degree of regularity in many aspects of cochlear anatomy, including cellular patterning and stereociliary bundle orientation, makes it possible to detect subtle changes in the development of PCP in response to either genetic or molecular perturbations.

Key words

Cochlea Hair cells Development Organ of Corti Stereociliary bundle Kinocilium Microtubules Actin Vangl2 Wnt 


  1. 1.
    Hudspeth, A.J., and Corey, D.P. (1977). Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74, 2407–2411.PubMedCrossRefGoogle Scholar
  2. 2.
    Frolenkov, G.I., Belyantseva, I.A., Friedman, T.B., and Griffith, A.J. (2004). Genetic insights into the morphogenesis of inner ear hair cells. Nature Reviews Genetics, 489–498.Google Scholar
  3. 3.
    Lim, D.J. (1986). Functional structure of the organ of Corti: a review. Hear Res 22, 117–146.PubMedCrossRefGoogle Scholar
  4. 4.
    Nayak, G.D., Ratnayaka, H.S., Goodyear, R.J., and Richardson, G.P. (2007). Development of the hair bundle and mechanotransduction. Int J Dev Biol 51, 597–608.PubMedCrossRefGoogle Scholar
  5. 5.
    Denman-Johnson, K., and Forge, A. (1999). Establishment of hair bundle polarity and orientation in the developing vestibular system of the mouse. J. Neurocytol, 821–835.Google Scholar
  6. 6.
    Hudspeth, A.J., and Jacobs, R. (1979). Stereocilia mediate transduction in vertebrate hair cells (auditory system/cilium/vestibular system). Proc Natl Acad Sci USA 76, 1506–1509.PubMedCrossRefGoogle Scholar
  7. 7.
    Cotanche, D.A., and Corwin, J.T. (1991). Stereociliary bundles reorient during hair cell development and regeneration in the chick cochlea. Hear Res 52, 379–402.PubMedCrossRefGoogle Scholar
  8. 8.
    Tilney, M.S., Tilney, L.G., and DeRosier, D.J. (1987). The distribution of hair cell bundle lengths and orientations suggests an unexpected pattern of hair cell stimulation in the chick cochlea. Hear Res 25, 141–151.PubMedCrossRefGoogle Scholar
  9. 9.
    Kaltenbach, J.A., and Falzarano, P.R. (1994). Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti. The Journal of comparative neurology 340, 87–97.PubMedCrossRefGoogle Scholar
  10. 10.
    Dabdoub, A., and Kelley, M.W. (2005). Planar cell polarity and a potential role for a Wnt morphogen gradient in stereociliary bundle orientation in the mammalian inner ear. Journal of neurobiology 64, 446–457.PubMedCrossRefGoogle Scholar
  11. 11.
    Ross, A.J., May-Simera, H., Eichers, E.R., Kai, M., Hill, J., Jagger, D.J., Leitch, C.C., Chapple, J.P., Munro, P.M., Fisher, S., et al (2005). Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 37, 1135–1140.PubMedCrossRefGoogle Scholar
  12. 12.
    Jones, C., Roper, V.C., Foucher, I., Qian, D., Banizs, B., Petit, C., Yoder, B.K., and Chen, P. (2008). Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat Genet 40, 69–77.PubMedCrossRefGoogle Scholar
  13. 13.
    Kelley, M.W. (2006). Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 7, 837–849.PubMedCrossRefGoogle Scholar
  14. 14.
    Dabdoub, A., Donohue, M.J., Brennan, A., Wolf, V., Montcouquiol, M., Sassoon, D.A., Hseih, J.C., Rubin, J.S., Salinas, P.C., and Kelley, M.W. (2003). Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development 130, 2375–2384.PubMedCrossRefGoogle Scholar
  15. 15.
    Ybot-Gonzalez, P., Savery, D., Gerrelli, D., Signore, M., Mitchell, C.E., Faux, C.H., Greene, N.D., and Copp, A.J. (2007). Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134, 789–799.PubMedCrossRefGoogle Scholar
  16. 16.
    Vladar, E.K., Antic, D., and Axelrod, J.D. (2009). Planar cell polarity signaling: the developing cell’s compass. Cold Spring Harb Perspect Biol 1, a002964.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang, J., Mark, S., Zhang, X., Qian, D., Yoo, S.J., Radde-Gallwitz, K., Zhang, Y., Lin, X., Collazo, A., Wynshaw-Boris, A., et al (2005). Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nat Genet 37, 980–985.PubMedCrossRefGoogle Scholar
  18. 18.
    Montcouquiol, M., Rachel, R.A., Lanford, P.J., Copeland, N.G., Jenkins, N.A., and Kelley, M.W. (2003). Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423, 173–177.PubMedCrossRefGoogle Scholar
  19. 19.
    Lu, X., Borchers, A.G., Jolicoeur, C., Rayburn, H., Baker, J.C., and Tessier-Lavigne, M. (2004). PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 430, 93–98.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Laboratory of Cochlear DevelopmentNational Institute on Deafness and other Communication Disorders, National Institutes of HealthBethesdaUSA

Personalised recommendations