Structural Variation and Its Effect on Expression

  • Louise Harewood
  • Evelyne Chaignat
  • Alexandre Reymond
Part of the Methods in Molecular Biology book series (MIMB, volume 838)


Structural variation, whether it is caused by copy number variants or present in a balanced form, such as reciprocal translocations and inversions, can have a profound and dramatic effect on the expression of genes mapping within and close to the rearrangement, as well as affecting others genome wide. These effects can be caused by altering the copy number of one or more genes or regulatory elements (dosage effect) or from physical disruption of links between regulatory elements and their associated gene or genes, resulting in perturbation of expression. Similarly, large-scale structural variants can result in genome-wide expression changes by altering the positions that chromosomes occupy within the nucleus, potentially disrupting not only local cis interactions, but also trans interactions that occur throughout the genome. Structural variation is, therefore, a significant factor in the study of gene expression and is discussed here in more detail.

Key words

Structural variation CNV Translocation Inversion Gene expression Position effect 


  1. 1.
    Adams, D.J., Dermitzakis, E.T., Cox, T., Smith, J., Davies, R., Banerjee, R., Bonfield, J., Mullikin, J.C., Chung, Y.J., Rogers, J., and Bradley, A. (2005) Complex haplotypes, copy number polymorphisms and coding variation in two recently divergent mouse strains Nat.Genet. 37, 532536Google Scholar
  2. 2.
    Egan, C.M., Sridhar, S., Wigler, M., and Hall, I.M. (2007) Recurrent DNA copy number variation in the laboratory mouse Nat.Genet. 39, 13841389Google Scholar
  3. 3.
    Henrichsen, C.N., Vinckenbosch, N., Zollner, S., Chaignat, E., Pradervand, S., Schutz, F., Ruedi, M., Kaessmann, H., and Reymond, A. (2009) Segmental copy number variation shapes tissue transcriptomes Nat.Genet. 41, 424429Google Scholar
  4. 4.
    Henrichsen, C.N., Chaignat, E., and Reymond, A. (2009) Copy number variants, diseases and gene expression Hum.Mol.Genet. 18, R1–R8Google Scholar
  5. 5.
    Guryev, V., Saar, K., Adamovic, T., Verheul, M., van Heesch, S.A., Cook, S., Pravenec, M., Aitman, T., Jacob, H., Shull, J.D., Hubner, N., and Cuppen, E. (2008) Distribution and functional impact of DNA copy number variation in the rat Nat.Genet. 40, 538545Google Scholar
  6. 6.
    Dopman, E.B. and Hartl, D.L. (2007) A portrait of copy-number polymorphism in Drosophila melanogaster Proc.Natl.Acad.Sci.USA 104, 1992019925CrossRefGoogle Scholar
  7. 7.
    Emerson, J.J., Cardoso-Moreira, M., Borevitz, J.O., and Long, M. (2008) Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster Science 320, 16291631Google Scholar
  8. 8.
    Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., Cho, E.K., Dallaire, S., Freeman, J.L., Gonzalez, J.R., Gratacos, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J.R., Marshall, C.R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M.J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L., Conrad, D.F., Estivill, X., Tyler-Smith, C., Carter, N.P., Aburatani, H., Lee, C., Jones, K.W., Scherer, S.W., and Hurles, M.E. (2006) Global variation in copy number in the human genome Nature 444, 444454Google Scholar
  9. 9.
    Tuzun, E., Sharp, A.J., Bailey, J.A., Kaul, R., Morrison, V.A., Pertz, L.M., Haugen, E., Hayden, H., Albertson, D., Pinkel, D., Olson, M.V., and Eichler, E.E. (2005) Fine-scale structural variation of the human genome Nat.Genet. 37, 727732Google Scholar
  10. 10.
    Sharp, A.J., Locke, D.P., McGrath, S.D., Cheng, Z., Bailey, J.A., Vallente, R.U., Pertz, L.M., Clark, R.A., Schwartz, S., Segraves, R., Oseroff, V.V., Albertson, D.G., Pinkel, D., and Eichler, E.E. (2005) Segmental duplications and copy-number variation in the human genome Am.J.Hum.Genet. 77, 7888CrossRefGoogle Scholar
  11. 11.
    Perry, G.H., Tchinda, J., McGrath, S.D., Zhang, J., Picker, S.R., Caceres, A.M., Iafrate, A.J., Tyler-Smith, C., Scherer, S.W., Eichler, E.E., Stone, A.C., and Lee, C. (2006) Hotspots for copy number variation in chimpanzees and humans Proc.Natl.Acad.Sci. USA 103, 80068011CrossRefGoogle Scholar
  12. 12.
    Kehrer-Sawatzki, H. and Cooper, D.N. (2007) Structural divergence between the human and chimpanzee genomes Hum.Genet. 120, 759778Google Scholar
  13. 13.
    Lee, A.S., Gutierrez-Arcelus, M., Perry, G.H., Vallender, E.J., Johnson, W.E., Miller, G.M., Korbel, J.O., and Lee, C. (2008) Analysis of copy number variation in the rhesus macaque genome identifies candidate loci for evolutionary and human disease studies Hum.Mol.Genet. 17, 11271136Google Scholar
  14. 14.
    Chen, W.K., Swartz, J.D., Rush, L.J., and Alvarez, C.E. (2009) Mapping DNA structural variation in dogs Genome Res. 19, 500509Google Scholar
  15. 15.
    Nicholas, T.J., Cheng, Z., Ventura, M., Mealey, K., Eichler, E.E., and Akey, J.M. (2009) The genomic architecture of segmental duplications and associated copy number variants in dogs Genome Res. 19, 491499Google Scholar
  16. 16.
    Liu, G.E., Hou, Y., Zhu, B., Cardone, M.F., Jiang, L., Cellamare, A., Mitra, A., Alexander, L.J., Coutinho, L.L., Dell′aquila, M.E., Gasbarre, L.C., Lacalandra, G., Li, R.W., Matukumalli, L.K., Nonneman, D., Regitano, L.C., Smith, T.P., Song, J., Sonstegard, T.S., Van Tassell, C.P., Ventura, M., Eichler, E.E., McDaneld, T.G., and Keele, J.W. (2010) Analysis of copy number variations among diverse cattle breeds Genome Res. Google Scholar
  17. 17.
    Conrad, D.F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J., Andrews, T.D., Barnes, C., Campbell, P., Fitzgerald, T., Hu, M., Ihm, C.H., Kristiansson, K., Macarthur, D.G., MacDonald, J.R., Onyiah, I., Pang, A.W., Robson, S., Stirrups, K., Valsesia, A., Walter, K., Wei, J., Tyler-Smith, C., Carter, N.P., Lee, C., Scherer, S.W., and Hurles, M.E. (2010) Origins and functional impact of copy number variation in the human genome Nature 464, 704712Google Scholar
  18. 18.
    Ogilvie, C.M., Braude, P., and Scriven, P.N. (2001) Successful pregnancy outcomes after preimplantation genetic diagnosis (PGD) for carriers of chromosome translocations Hum.Fertil.(Camb.) 4, 168171CrossRefGoogle Scholar
  19. 19.
    Warburton, D. (1991) De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints Am.J.Hum.Genet 49, 9951013Google Scholar
  20. 20.
    Lupski, J.R., Oca-Luna, R.M., Slaugenhaupt, S., Pentao, L., Guzzetta, V., Trask, B.J., Saucedo-Cardenas, O., Barker, D.F., Killian, J.M., Garcia, C.A., Chakravarti, A., and Patel, P.I. (1991) DNA duplication associated with Charcot-Marie-Tooth disease type 1A Cell 66, 219232PubMedCrossRefGoogle Scholar
  21. 21.
    Balikova, I., Lehesjoki, A.E., de Ravel, T.J., Thienpont, B., Chandler, K.E., Clayton-Smith, J., Traskelin, A.L., Fryns, J.P., and Vermeesch, J.R. (2009) Deletions in the VPS13B (COH1) gene as a cause of Cohen syndrome Hum.Mutat. 30, E845–E854CrossRefGoogle Scholar
  22. 22.
    Breckpot, J., Takiyama, Y., Thienpont, B., Van Vooren, S., Vermeesch, J.R., Ortibus, E., and Devriendt, K. (2008) A novel genomic disorder: a deletion of the SACS gene leading to spastic ataxia of Charlevoix-Saguenay Eur.J.Hum.Genet. 16, 10501054CrossRefGoogle Scholar
  23. 23.
    Lesnik Oberstein, S.A., Kriek, M., White, S.J., Kalf, M.E., Szuhai, K., den Dunnen, J.T., Breuning, M.H., and Hennekam, R.C. (2006) Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase Am.J.Hum.Genet. 79, 562566CrossRefGoogle Scholar
  24. 24.
    Watkins-Chow, D.E. and Pavan, W.J. (2008) Genomic copy number and expression variation within the C57BL/6J inbred mouse strain Genome Res. 18, 6066PubMedCrossRefGoogle Scholar
  25. 25.
    Dathe, K., Kjaer, K.W., Brehm, A., Meinecke, P., Nurnberg, P., Neto, J.C., Brunoni, D., Tommerup, N., Ott, C.E., Klopocki, E., Seemann, P., and Mundlos, S. (2009) Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2 Am.J.Hum.Genet. 84, 483492CrossRefGoogle Scholar
  26. 26.
    Weterman, M.A., van Ruissen, F., de Wissel, M., Bordewijk, L., Samijn, J.P., van der Pol, W.L., Meggouh, F., and Baas, F. (2010) Copy number variation upstream of PMP22 in Charcot-Marie-Tooth disease Eur.J.Hum.Genet. 18, 421428CrossRefGoogle Scholar
  27. 27.
    Lee, J.A., Madrid, R.E., Sperle, K., Ritterson, C.M., Hobson, G.M., Garbern, J., Lupski, J.R., and Inoue, K. (2006) Spastic paraplegia type 2 associated with axonal neuropathy and apparent PLP1 position effect Ann.Neurol. 59, 398403Google Scholar
  28. 28.
    Brown, K.K., Reiss, J.A., Crow, K., Ferguson, H.L., Kelly, C., Fritzsch, B., and Morton, C.C. (2010) Deletion of an enhancer near DLX5 and DLX6 in a family with hearing loss, craniofacial defects, and an inv(7)(q21.3q35) Hum.Genet. 127, 1931Google Scholar
  29. 29.
    Hogart, A., Leung, K.N., Wang, N.J., Wu, D.J., Driscoll, J., Vallero, R.O., Schanen, N.C., and LaSalle, J.M. (2009) Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number J.Med.Genet. 46, 8693CrossRefGoogle Scholar
  30. 30.
    Carelle-Calmels, N., Saugier-Veber, P., Girard-Lemaire, F., Rudolf, G., Doray, B., Guerin, E., Kuhn, P., Arrive, M., Gilch, C., Schmitt, E., Fehrenbach, S., Schnebelen, A., Frebourg, T., and Flori, E. (2009) Genetic compensation in a human genomic disorder N.Engl.J.Med. 360, 12111216Google Scholar
  31. 31.
    Orozco, L.D., Cokus, S.J., Ghazalpour, A., Ingram-Drake, L., Wang, S., van Nas, A., Che, N., Araujo, J.A., Pellegrini, M., and Lusis, A.J. (2009) Copy number variation influences gene expression and metabolic traits in mice Hum.Mol.Genet. 18, 41184129Google Scholar
  32. 32.
    Iborra, F.J., Pombo, A., Jackson, D.A., and Cook, P.R. (1996) Active RNA polymerases are localized within discrete transcription “factories” in human nuclei J.Cell Sci. 109 ( Pt 6), 14271436Google Scholar
  33. 33.
    Osborne, C.S., Chakalova, L., Brown, K.E., Carter, D., Horton, A., Debrand, E., Goyenechea, B., Mitchell, J.A., Lopes, S., Reik, W., and Fraser, P. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription Nat.Genet. 36, 10651071Google Scholar
  34. 34.
    Sexton, T., Umlauf, D., Kurukuti, S., and Fraser, P. (2007) The role of transcription factories in large-scale structure and dynamics of interphase chromatin Semin.Cell Dev.Biol. 18, 691697CrossRefGoogle Scholar
  35. 35.
    Merla, G., Howald, C., Henrichsen, C.N., Lyle, R., Wyss, C., Zabot, M.T., Antonarakis, S.E., and Reymond, A. (2006) Submicroscopic deletion in patients with Williams-Beuren syndrome influences expression levels of the nonhemizygous flanking genes Am.J.Hum.Genet. 79, 332341CrossRefGoogle Scholar
  36. 36.
    Stranger, B.E., Forrest, M.S., Dunning, M., Ingle, C.E., Beazley, C., Thorne, N., Redon, R., Bird, C.P., de Grassi, A., Lee, C., Tyler-Smith, C., Carter, N., Scherer, S.W., Tavare, S., Deloukas, P., Hurles, M.E., and Dermitzakis, E.T. (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes Science 315, 848853Google Scholar
  37. 37.
    Molina, J., Carmona-Mora, P., Chrast, J., Krall, P.M., Canales, C.P., Lupski, J.R., Reymond, A., and Walz, K. (2008) Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki-Lupski syndrome Hum.Mol.Genet. 17, 24862495Google Scholar
  38. 38.
    Gabellini, D., Green, M.R., and Tupler, R. (2002) Inappropriate gene activation in FSHD: a repressor complex binds a chromosomal repeat deleted in dystrophic muscle Cell 110, 339348Google Scholar
  39. 39.
    Gabellini, D., D’Antona, G., Moggio, M., Prelle, A., Zecca, C., Adami, R., Angeletti, B., Ciscato, P., Pellegrino, M.A., Bottinelli, R., Green, M.R., and Tupler, R. (2006) Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1 Nature 439, 973977Google Scholar
  40. 40.
    Muncke, N., Wogatzky, B.S., Breuning, M., Sistermans, E.A., Endris, V., Ross, M., Vetrie, D., Catsman-Berrevoets, C.E., and Rappold, G. (2004) Position effect on PLP1 may cause a subset of Pelizaeus-Merzbacher disease symptoms J.Med.Genet 41, e121CrossRefGoogle Scholar
  41. 41.
    Lee, J.A. and Lupski, J.R. (2006) Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders Neuron 52, 103121Google Scholar
  42. 42.
    Fraser, P. and Bickmore, W. (2007) Nuclear organization of the genome and the potential for gene regulation Nature 447, 413417Google Scholar
  43. 43.
    Heard, E. and Bickmore, W. (2007) The ins and outs of gene regulation and chromosome territory organisation Curr.Opin.Cell Biol. 19, 311316CrossRefGoogle Scholar
  44. 44.
    Denoeud, F., Kapranov, P., Ucla, C., Frankish, A., Castelo, R., Drenkow, J., Lagarde, J., Alioto, T., Manzano, C., Chrast, J., Dike, S., Wyss, C., Henrichsen, C.N., Holroyd, N., Dickson, M.C., Taylor, R., Hance, Z., Foissac, S., Myers, R.M., Rogers, J., Hubbard, T., Harrow, J., Guigo, R., Gingeras, T.R., Antonarakis, S.E., and Reymond, A. (2007) Prominent use of distal 5′ transcription start sites and discovery of a large number of additional exons in ENCODE regions Genome Res. 17, 746759PubMedCrossRefGoogle Scholar
  45. 45.
    Birney, E., Stamatoyannopoulos, J.A., Dutta, A., Guigo, R., Gingeras, T.R., Margulies, E.H., Weng, Z., Snyder, M., Dermitzakis, E.T., Thurman, R.E., Kuehn, M.S., Taylor, C.M., Neph, S., Koch, C.M., Asthana, S., Malhotra, A., Adzhubei, I., Greenbaum, J.A., Andrews, R.M., Flicek, P., Boyle, P.J., Cao, H., Carter, N.P., Clelland, G.K., Davis, S., Day, N., Dhami, P., Dillon, S.C., Dorschner, M.O., Fiegler, H., Giresi, P.G., Goldy, J., Hawrylycz, M., Haydock, A., Humbert, R., James, K.D., Johnson, B.E., Johnson, E.M., Frum, T.T., Rosenzweig, E.R., Karnani, N., Lee, K., Lefebvre, G.C., Navas, P.A., Neri, F., Parker, S.C., Sabo, P.J., Sandstrom, R., Shafer, A., Vetrie, D., Weaver, M., Wilcox, S., Yu, M., Collins, F.S., Dekker, J., Lieb, J.D., Tullius, T.D., Crawford, G.E., Sunyaev, S., Noble, W.S., Dunham, I., Denoeud, F., Reymond, A., Kapranov, P., Rozowsky, J., Zheng, D., Castelo, R., Frankish, A., Harrow, J., Ghosh, S., Sandelin, A., Hofacker, I.L., Baertsch, R., Keefe, D., Dike, S., Cheng, J., Hirsch, H.A., Sekinger, E.A., Lagarde, J., Abril, J.F., Shahab, A., Flamm, C., Fried, C., Hackermuller, J., Hertel, J., Lindemeyer, M., Missal, K., Tanzer, A., Washietl, S., Korbel, J., Emanuelsson, O., Pedersen, J.S., Holroyd, N., Taylor, R., Swarbreck, D., Matthews, N., Dickson, M.C., Thomas, D.J., Weirauch, M.T., Gilbert, J., Drenkow, J., Bell, I., Zhao, X., Srinivasan, K.G., Sung, W.K., Ooi, H.S., Chiu, K.P., Foissac, S., Alioto, T., Brent, M., Pachter, L., Tress, M.L., Valencia, A., Choo, S.W., Choo, C.Y., Ucla, C., Manzano, C., Wyss, C., Cheung, E., Clark, T.G., Brown, J.B., Ganesh, M., Patel, S., Tammana, H., Chrast, J., Henrichsen, C.N., Kai, C., Kawai, J., Nagalakshmi, U., Wu, J., Lian, Z., Lian, J., Newburger, P., Zhang, X., Bickel, P., Mattick, J.S., Carninci, P., Hayashizaki, Y., Weissman, S., Hubbard, T., Myers, R.M., Rogers, J., Stadler, P.F., Lowe, T.M., Wei, C.L., Ruan, Y., Struhl, K., Gerstein, M., Antonarakis, S.E., Fu, Y., Green, E.D., Karaoz, U., Siepel, A., Taylor, J., Liefer, L.A., Wetterstrand, K.A., Good, P.J., Feingold, E.A., Guyer, M.S., Cooper, G.M., Asimenos, G., Dewey, C.N., Hou, M., Nikolaev, S., Montoya-Burgos, J.I., Loytynoja, A., Whelan, S., Pardi, F., Massingham, T., Huang, H., Zhang, N.R., Holmes, I., Mullikin, J.C., Ureta-Vidal, A., Paten, B., Seringhaus, M., Church, D., Rosenbloom, K., Kent, W.J., Stone, E.A., Batzoglou, S., Goldman, N., Hardison, R.C., Haussler, D., Miller, W., Sidow, A., Trinklein, N.D., Zhang, Z.D., Barrera, L., Stuart, R., King, D.C., Ameur, A., Enroth, S., Bieda, M.C., Kim, J., Bhinge, A.A., Jiang, N., Liu, J., Yao, F., Vega, V.B., Lee, C.W., Ng, P., Shahab, A., Yang, A., Moqtaderi, Z., Zhu, Z., Xu, X., Squazzo, S., Oberley, M.J., Inman, D., Singer, M.A., Richmond, T.A., Munn, K.J., Rada-Iglesias, A., Wallerman, O., Komorowski, J., Fowler, J.C., Couttet, P., Bruce, A.W., Dovey, O.M., Ellis, P.D., Langford, C.F., Nix, D.A., Euskirchen, G., Hartman, S., Urban, A.E., Kraus, P., Van Calcar, S., Heintzman, N., Kim, T.H., Wang, K., Qu, C., Hon, G., Luna, R., Glass, C.K., Rosenfeld, M.G., Aldred, S.F., Cooper, S.J., Halees, A., Lin, J.M., Shulha, H.P., Zhang, X., Xu, M., Haidar, J.N., Yu, Y., Ruan, Y., Iyer, V.R., Green, R.D., Wadelius, C., Farnham, P.J., Ren, B., Harte, R.A., Hinrichs, A.S., Trumbower, H., and Clawson, H. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project Nature 447, 799816Google Scholar
  46. 46.
    Reymond, A., Henrichsen, C.N., Harewood, L., and Merla, G. (2007) Side effects of genome structural changes Curr.Opin.Genet.Dev. 17, 381386CrossRefGoogle Scholar
  47. 47.
    Cahan, P., Li, Y., Izumi, M., and Graubert, T.A. (2009) The impact of copy number variation on local gene expression in mouse hematopoietic stem and progenitor cells Nat.Genet. 41, 430437Google Scholar
  48. 48.
    Lindenbaum, R.H., Clarke, G., Patel, C., Moncrieff, M., and Hughes, J.T. (1979) Muscular dystrophy in an X; 1 translocation female suggests that Duchenne locus is on X chromosome short arm J.Med.Genet 16, 389392CrossRefGoogle Scholar
  49. 49.
    Verellen-Dumoulin, C., Freund, M., De Meyer, R., Laterre, C., Frederic, J., Thompson, M.W., Markovic, V.D., and Worton, R.G. (1984) Expression of an X-linked muscular dystrophy in a female due to translocation involving Xp21 and non-random inactivation of the normal X chromosome Hum.Genet 67, 115119Google Scholar
  50. 50.
    Ray, P.N., Belfall, B., Duff, C., Logan, C., Kean, V., Thompson, M.W., Sylvester, J.E., Gorski, J.L., Schmickel, R.D., and Worton, R.G. (1985) Cloning of the breakpoint of an X;21 translocation associated with Duchenne muscular dystrophy Nature 318, 672675PubMedCrossRefGoogle Scholar
  51. 51.
    Cremers, F.P., Brunsmann, F., Berger, W., van Kerkhoff, E.P., van de Pol, T.J., Wieringa, B., Pawlowitzki, I.H., and Ropers, H.H. (1990) Cloning of the breakpoints of a deletion associated with choroidermia Hum.Genet 86, 6164Google Scholar
  52. 52.
    Attree, O., Olivos, I.M., Okabe, I., Bailey, L.C., Nelson, D.L., Lewis, R.A., McInnes, R.R., and Nussbaum, R.L. (1992) The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase Nature 358, 239242PubMedCrossRefGoogle Scholar
  53. 53.
    Gleeson, J.G., Allen, K.M., Fox, J.W., Lamperti, E.D., Berkovic, S., Scheffer, I., Cooper, E.C., Dobyns, W.B., Minnerath, S.R., Ross, M.E., and Walsh, C.A. (1998) Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein Cell 92, 6372PubMedCrossRefGoogle Scholar
  54. 54.
    Collin, G.B., Marshall, J.D., Ikeda, A., So, W.V., Russell-Eggitt, I., Maffei, P., Beck, S., Boerkoel, C.F., Sicolo, N., Martin, M., Nishina, P.M., and Naggert, J.K. (2002) Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alstrom syndrome Nat.Genet 31, 7478Google Scholar
  55. 55.
    Hearn, T., Renforth, G.L., Spalluto, C., Hanley, N.A., Piper, K., Brickwood, S., White, C., Connolly, V., Taylor, J.F., Russell-Eggitt, I., Bonneau, D., Walker, M., and Wilson, D.I. (2002) Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alstrom syndrome Nat.Genet 31, 7983Google Scholar
  56. 56.
    Kleinjan, D.J. and van Heyningen, V. (1998) Position effect in human genetic disease Hum.Mol.Genet 7, 16111618Google Scholar
  57. 57.
    Kleinjan, D.J. and Coutinho, P. (2009) Cis-ruption mechanisms: disruption of cis-regulatory control as a cause of human genetic disease Brief.Funct.Genomic.Proteomic. 8, 317332CrossRefGoogle Scholar
  58. 58.
    Lauderdale, J.D., Wilensky, J.S., Oliver, E.R., Walton, D.S., and Glaser, T. (2000) 3′ deletions cause aniridia by preventing PAX6 gene expression Proc.Natl.Acad.Sci. USA 97, 1375513759CrossRefGoogle Scholar
  59. 59.
    Benko, S., Fantes, J.A., Amiel, J., Kleinjan, D.J., Thomas, S., Ramsay, J., Jamshidi, N., Essafi, A., Heaney, S., Gordon, C.T., McBride, D., Golzio, C., Fisher, M., Perry, P., Abadie, V., Ayuso, C., Holder-Espinasse, M., Kilpatrick, N., Lees, M.M., Picard, A., Temple, I.K., Thomas, P., Vazquez, M.P., Vekemans, M., Crollius, H.R., Hastie, N.D., Munnich, A., Etchevers, H.C., Pelet, A., Farlie, P.G., FitzPatrick, D.R., and Lyonnet, S. (2009) Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence Nat.Genet. 41, 359364Google Scholar
  60. 60.
    Gordon, C.T., Tan, T.Y., Benko, S., FitzPatrick, D., Lyonnet, S., and Farlie, P.G. (2009) Long-range regulation at the SOX9 locus in development and disease J.Med.Genet. 46, 649656CrossRefGoogle Scholar
  61. 61.
    Leipoldt, M., Erdel, M., Bien-Willner, G.A., Smyk, M., Theurl, M., Yatsenko, S.A., Lupski, J.R., Lane, A.H., Shanske, A.L., Stankiewicz, P., and Scherer, G. (2007) Two novel translocation breakpoints upstream of SOX9 define borders of the proximal and distal breakpoint cluster region in campomelic dysplasia Clin.Genet. 71, 6775Google Scholar
  62. 62.
    Velagaleti, G.V., Bien-Willner, G.A., Northup, J.K., Lockhart, L.H., Hawkins, J.C., Jalal, S.M., Withers, M., Lupski, J.R., and Stankiewicz, P. (2005) Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia Am.J.Hum.Genet 76, 652662Google Scholar
  63. 63.
    Demura, M., Martin, R.M., Shozu, M., Sebastian, S., Takayama, K., Hsu, W.T., Schultz, R.A., Neely, K., Bryant, M., Mendonca, B.B., Hanaki, K., Kanzaki, S., Rhoads, D.B., Misra, M., and Bulun, S.E. (2007) Regional rearrangements in chromosome 15q21 cause formation of cryptic promoters for the CYP19 (aromatase) gene Hum.Mol.Genet. 16, 25292541Google Scholar
  64. 64.
    Shozu, M., Sebastian, S., Takayama, K., Hsu, W.T., Schultz, R.A., Neely, K., Bryant, M., and Bulun, S.E. (2003) Estrogen excess associated with novel gain-of-function mutations affecting the aromatase gene N.Engl.J.Med. 348, 18551865Google Scholar
  65. 65.
    Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., Sandstrom, R., Bernstein, B., Bender, M.A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L.A., Lander, E.S., and Dekker, J. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome Science 326, 289293Google Scholar
  66. 66.
    Mitchell, J.A. and Fraser, P. (2008) Transcription factories are nuclear subcompartments that remain in the absence of transcription Genes Dev. 22, 2025Google Scholar
  67. 67.
    Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., de Wit, E., van Steensel, B., and de Laat, W. (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4 C) Nat.Genet. 38, 13481354Google Scholar
  68. 68.
    Croft, J.A., Bridger, J.M., Boyle, S., Perry, P., Teague, P., and Bickmore, W.A. (1999) Differences in the localization and morphology of chromosomes in the human nucleus J.Cell Biol. 145, 11191131CrossRefGoogle Scholar
  69. 69.
    Boyle, S., Gilchrist, S., Bridger, J.M., Mahy, N.L., Ellis, J.A., and Bickmore, W.A. (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells Hum.Mol.Genet 10, 211219Google Scholar
  70. 70.
    Taslerova, R., Kozubek, S., Lukasova, E., Jirsova, P., Bartova, E., and Kozubek, M. (2003) Arrangement of chromosome 11 and 22 territories, EWSR1 and FLI1 genes, and other genetic elements of these chromosomes in human lymphocytes and Ewing sarcoma cells Hum.Genet. 112, 143155Google Scholar
  71. 71.
    Taslerova, R., Kozubek, S., Bartova, E., Gajdus-kova, P., Kodet, R., and Kozubek, M. (2006) Localization of genetic elements of intact and derivative chromosome 11 and 22 territories in nuclei of Ewing sarcoma cells J.Struct.Biol. 155, 493504CrossRefGoogle Scholar
  72. 72.
    Finlan, L.E., Sproul, D., Thomson, I., Boyle, S., Kerr, E., Perry, P., Ylstra, B., Chubb, J.R., and Bickmore, W.A. (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells PLoS.Genet. 4, e1000039Google Scholar
  73. 73.
    Reddy, K.S., Rajangam, S., and Thomas, I.M. (1999) Structural chromosomal anomaly in mental retardation Indian J.Pediatr. 66, 937940Google Scholar
  74. 74.
    Deniaud, E. and Bickmore, W.A. (2009) Trans-cription and the nuclear periphery: edge of darkness? Curr.Opin.Genet.Dev. 19, 187191PubMedCrossRefGoogle Scholar
  75. 75.
    Williams, R.R., Azuara, V., Perry, P., Sauer, S., Dvorkina, M., Jorgensen, H., Roix, J., McQueen, P., Misteli, T., Merkenschlager, M., and Fisher, A.G. (2006) Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus J.Cell Sci. 119, 132140CrossRefGoogle Scholar
  76. 76.
    Szczerbal, I., Foster, H.A., and Bridger, J.M. (2009) The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system Chromosoma 118, 647663Google Scholar
  77. 77.
    Harewood, L., Schutz, F., Boyle, S., Perry, P., Delorenzi, M., Bickmore, W.A., and Reymond, A. (2010) The effect of translocation-induced nuclear reorganization on gene expression Genome Res. Google Scholar
  78. 78.
    Brown, J.M., Green, J., das Neves, R.P., Wallace, H.A., Smith, A.J., Hughes, J., Gray, N., Taylor, S., Wood, W.G., Higgs, D.R., Iborra, F.J., and Buckle, V.J. (2008) Association between active genes occurs at nuclear speckles and is modulated by chromatin environment J.Cell Biol. 182, 10831097Google Scholar
  79. 79.
    Misteli, T. (2004) Spatial positioning; a new dimension in genome function Cell 119, 153156PubMedCrossRefGoogle Scholar
  80. 80.
    Osborne, C.S., Chakalova, L., Mitchell, J.A., Horton, A., Wood, A.L., Bolland, D.J., Corcoran, A.E., and Fraser, P. (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh PLoS.Biol. 5, e192Google Scholar
  81. 81.
    Branco, M.R. and Pombo, A. (2006) Interming-ling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations PLoS.Biol. 4, e138Google Scholar
  82. 82.
    Goetze, S., Mateos-Langerak, J., Gierman, H.J., de Leeuw, W., Giromus, O., Indemans, M.H., Koster, J., Ondrej, V., Versteeg, R., and van Driel, R. (2007) The three-dimensional structure of human interphase chromosomes is related to the transcriptome map Mol.Cell Biol. 27, 44754487Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Louise Harewood
    • 1
  • Evelyne Chaignat
    • 1
  • Alexandre Reymond
    • 1
  1. 1.The Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland

Personalised recommendations