Array-Based Approaches in Prenatal Diagnosis

  • Paul D. Brady
  • Koenraad Devriendt
  • Jan Deprest
  • Joris R. Vermeesch
Part of the Methods in Molecular Biology book series (MIMB, volume 838)


The diagnostic benefits of array comparative genomic hybridisation (CGH) have been demonstrated, with this technique now being applied as the first-line test for patients with intellectual disabilities and/or multiple congenital anomalies in numerous laboratories. There are no technical barriers preventing the introduction of array CGH to prenatal diagnosis. The question is rather how this is best implemented, and for whom. The challenges lie in the interpretation of copy number variations, particularly those which exhibit reduced penetrance or variable expression, and how to deal with incidental findings, which are not related to the observed foetal anomalies, or unclassified variants which are currently of uncertain clinical significance. Recently, applications of array technologies to the field of pre-implantation genetic diagnosis have also been demonstrated. It is important to address the ethical questions raised concerning the genome-wide analysis of prenatal samples to ensure the maximum benefit for patients. We provide an overview of the recent developments on the use of array CGH in the prenatal setting, and address the challenges posed.

Key words

Prenatal diagnosis Array CGH PGD Copy number variation CNV Incidental findings Unclassified variants Miscarriage POC 



Cell-free foetal DNA


Unclassified variants


Whole-genome amplification


Copy number variation


Product of conception


  1. 1.
    Steel, M. W. and Breg, W. R. (1966) Chromosome analysis of human amniotic fluid cells. Lancet i, 383-Google Scholar
  2. 2.
    Jacobson, C. B. and Barter, R. H. (1967) Intrauterine diagnosis and management of genetic defects. Am J Obstet Gynecol 99, 796-Google Scholar
  3. 3.
    Jacobson, C. B. and Barter, R. H. (1967) Some cytogenetic aspects of habitual abortion. Am J Obstet Gynecol 97, 666-Google Scholar
  4. 4.
    Nadler, H. L. (1968) Antenatal detection of heriditary disorders. Pediatrics 42, 912-Google Scholar
  5. 5.
    Philip, J., Bryndorf, T., and Christensen, B. (1994) Prenatal aneuploidy detection in interphase cells by fluorescence in situ hybridization (FISH) Prenat Diagn 14, 1203–1215.Google Scholar
  6. 6.
    Bryndorf, T., Christensen, B., Vad, M., Parner, J., Carelli, M. P., Ward, B. E., Klinger, K. W., Bang, J., and Philip, J. (1996) Prenatal detection of chromosome aneuploidies in uncultured chorionic villus samples by FISH Am J Hum Genet 59, 918–926.Google Scholar
  7. 7.
    Bryndorf, T., Lundsteen, C., Lamb, A., Christensen, B., and Philip, J. (2000) Rapid prenatal diagnosis of chromosome aneuploidies by interphase fluorescence in situ hybridization: a one-year clinical experience with high-risk and urgent fetal and postnatal samples Acta Obstet Gynecol Scand 79, 8–14.Google Scholar
  8. 8.
    Tepperberg, J., Pettenati, M. J., Rao, P. N., Lese, C. M., Rita, D., Wyandt, H., Gersen, S., White, B., and Schoonmaker, M. M. (2001) Prenatal diagnosis using interphase fluorescence in situ hybridization (FISH): 2-year multi-center retrospective study and review of the literature Prenat Diagn 21, 293–301.Google Scholar
  9. 9.
    Adinolfi, M., Pertl, B., and Sherlock, J. (1997) Rapid detection of aneuploidies by microsatellite and the quantitative fluorescent polymerase chain reaction Prenat Diagn 17, 1299–1311.Google Scholar
  10. 10.
    Mann, K., Fox, S. P., Abbs, S. J., Yau, S. C., Scriven, P. N., Docherty, Z., and Ogilvie, C. M. (2001) Development and implementation of a new rapid aneuploidy diagnostic service within the UK National Health Service and implications for the future of prenatal diagnosis Lancet 358, 1057–1061.Google Scholar
  11. 11.
    Schouten, J. P., McElgunn, C. J., Waaijer, R., Zwijnenburg, D., Diepvens, F., and Pals, G. (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification Nucleic Acids Res 30, e57-Google Scholar
  12. 12.
    Schouten, J. and Galjaard, R. J. (2008) MLPA for prenatal diagnosis of commonly occurring aneuploidies Methods Mol Biol 444, 111–122.Google Scholar
  13. 13.
    Rickman, L., Fiegler, H., Shaw-Smith, C., Nash, R., Cirigliano, V., Voglino, G., Ng, B. L., Scott, C., Whittaker, J., Adinolfi, M., Carter, N. P., and Bobrow, M. (2006) Prenatal detection of unbalanced chromosomal rearrangements by array CGH J Med Genet 43, 353–361.Google Scholar
  14. 14.
    Sahoo, T., Cheung, S. W., Ward, P., Darilek, S., Patel, A., del, G. D., Kang, S. H., Lalani, S. R., Li, J., McAdoo, S., Burke, A., Shaw, C. A., Stankiewicz, P., Chinault, A. C., Van den Veyver, I. B., Roa, B. B., Beaudet, A. L., and Eng, C. M. (2006) Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization Genet Med 8, 719–727.Google Scholar
  15. 15.
    Lapierre, J. M., Cacheux, V., Luton, D., Collot, N., Oury, J. F., Aurias, A., and Tachdjian, G. (2000) Analysis of uncultured amniocytes by comparative genomic hybridization: a prospective prenatal study Prenat Diagn 20, 123–131.Google Scholar
  16. 16.
    Bi, W., Breman, A. M., Venable, S. F., Eng, P. A., Sahoo, T., Lu, X. Y., Patel, A., Beaudet, A. L., Cheung, S. W., and White, L. D. (2008) Rapid prenatal diagnosis using uncultured amniocytes and oligonucleotide array CGH Prenat Diagn 28, 943–949.Google Scholar
  17. 17.
    Tyreman, M., Abbott, K. M., Willatt, L. R., Nash, R., Lees, C., Whittaker, J., and Simonic, I. (2009) High resolution array analysis: diagnosing pregnancies with abnormal ultrasound findings J Med Genet 46, 531–541.Google Scholar
  18. 18.
    Larrabee, P. B., Johnson, K. L., Pestova, E., Lucas, M., Wilber, K., LeShane, E. S., Tantravahi, U., Cowan, J. M., and Bianchi, D. W. (2004) Microarray analysis of cell-free fetal DNA in amniotic fluid: a prenatal molecular karyotype Am J Hum Genet 75, 485–491.Google Scholar
  19. 19.
    Miura, S., Miura, K., Masuzaki, H., Miyake, N., Yoshiura, K., Sosonkina, N., Harada, N., Shimokawa, O., Nakayama, D., Yoshimura, S., Matsumoto, N., Niikawa, N., and Ishimaru, T. (2006) Microarray comparative genomic hybridization (CGH)-based prenatal diagnosis for chromosome abnormalities using cell-free fetal DNA in amniotic fluid J Hum Genet 51, 412–417.Google Scholar
  20. 20.
    Lapaire, O., Lu, X. Y., Johnson, K. L., Jarrah, Z., Stroh, H., Cowan, J. M., Tantravahi, U., and Bianchi, D. W. (2007) Array-CGH analysis of cell-free fetal DNA in 10 mL of amniotic fluid supernatant Prenat Diagn 27, 616–621.Google Scholar
  21. 21.
    Van den Veyver, I. B., Patel, A., Shaw, C. A., Pursley, A. N., Kang, S. H., Simovich, M. J., Ward, P. A., Darilek, S., Johnson, A., Neill, S. E., Bi, W., White, L. D., Eng, C. M., Lupski, J. R., Cheung, S. W., and Beaudet, A. L. (2009) Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases Prenat Diagn 29, 29–39.Google Scholar
  22. 22.
    Shaffer, L. G., Coppinger, J., Alliman, S., Torchia, B. A., Theisen, A., Ballif, B. C., and Bejjani, B. A. (2008) Comparison of microarray-based detection rates for cytogenetic abnormalities in prenatal and neonatal specimens Prenat Diagn 28, 789–795.Google Scholar
  23. 23.
    Van den Veyver, I. B. and Beaudet, A. L. (2006) Comparative genomic hybridization and prenatal diagnosis Curr Opin Obstet Gynecol 18, 185–191.Google Scholar
  24. 24.
    Kashork, C. D., Theisen, A., and Shaffer, L. G. (2008) Prenatal diagnosis using array CGH Methods Mol Biol 444, 59–69.Google Scholar
  25. 25.
    Breman, A. M., Bi, W. M., and Cheung, S. W. (2009) Prenatal diagnosis by array-based comparative genomic hybridization in the clinical laboratory setting Beijing Da Xue Xue Bao 41, 500–504.Google Scholar
  26. 26.
    Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., Scherer, S. W., and Lee, C. (2004) Detection of large-scale variation in the human genome Nat Genet 36, 949–951.Google Scholar
  27. 27.
    Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Maner, S., Massa, H., Walker, M., Chi, M., Navin, N., Lucito, R., Healy, J., Hicks, J., Ye, K., Reiner, A., Gilliam, T. C., Trask, B., Patterson, N., Zetterberg, A., and Wigler, M. (2004) Large-scale copy number polymorphism in the human genome Science 305, 525–528.Google Scholar
  28. 28.
    Conrad, D. F., Andrews, T. D., Carter, N. P., Hurles, M. E., and Pritchard, J. K. (2006) A high-resolution survey of deletion polymorphism in the human genome Nat Genet 38, 75–81.Google Scholar
  29. 29.
    Hinds, D. A., Kloek, A. P., Jen, M., Chen, X., and Frazer, K. A. (2006) Common deletions and SNPs are in linkage disequilibrium in the human genome Nat Genet 38, 82–85.Google Scholar
  30. 30.
    McCarroll, S. A. and Altshuler, D. M. (2007) Copy-number variation and association studies of human disease Nat Genet 39, S37–S42.Google Scholar
  31. 31.
    Feuk, L., Carson, A. R., and Scherer, S. W. (2006) Structural variation in the human genome Nat Rev Genet 7, 85–97.Google Scholar
  32. 32.
    Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., Cho, E. K., Dallaire, S., Freeman, J. L., Gonzalez, J. R., Gratacos, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J. R., Marshall, C. R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M. J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L., Conrad, D. F., Estivill, X., Tyler-Smith, C., Carter, N. P., Aburatani, H., Lee, C., Jones, K. W., Scherer, S. W., and Hurles, M. E. (2006) Global variation in copy number in the human genome Nature 444, 444–454.Google Scholar
  33. 33.
    Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J., Andrews, T. D., Barnes, C., Campbell, P., Fitzgerald, T., Hu, M., Ihm, C. H., Kristiansson, K., Macarthur, D. G., MacDonald, J. R., Onyiah, I., Pang, A. W., Robson, S., Stirrups, K., Valsesia, A., Walter, K., Wei, J., Tyler-Smith, C., Carter, N. P., Lee, C., Scherer, S. W., and Hurles, M. E. (2009) Origins and functional impact of copy number variation in the human genome Nature Google Scholar
  34. 34.
    Perry, G. H., Ben-Dor, A., Tsalenko, A., Sampas, N., Rodriguez-Revenga, L., Tran, C. W., Scheffer, A., Steinfeld, I., Tsang, P., Yamada, N. A., Park, H. S., Kim, J. I., Seo, J. S., Yakhini, Z., Laderman, S., Bruhn, L., and Lee, C. (2008) The fine-scale and complex architecture of human copy-number variation Am J Hum Genet 82, 685–695.Google Scholar
  35. 35.
    Bejjani, B. A., Saleki, R., Ballif, B. C., Rorem, E. A., Sundin, K., Theisen, A., Kashork, C. D., and Shaffer, L. G. (2005) Use of targeted array-based CGH for the clinical diagnosis of chromosomal imbalance: is less more? Am J Med Genet A 134, 259–267.Google Scholar
  36. 36.
    Baldwin, E. L., Lee, J. Y., Blake, D. M., Bunke, B. P., Alexander, C. R., Kogan, A. L., Ledbetter, D. H., and Martin, C. L. (2008) Enhanced detection of clinically relevant genomic imbalances using a targeted plus whole genome oligonucleotide microarray Genet Med 10, 415–429.Google Scholar
  37. 37.
    Coppinger, J., Alliman, S., Lamb, A. N., Torchia, B. S., Bejjani, B. A., and Shaffer, L. G. (2009) Whole-genome microarray analysis in prenatal specimens identifies clinically significant chromosome alterations without increase in results of unclear significance compared to targeted microarray Prenat Diagn Google Scholar
  38. 38.
    Yobb, T. M., Somerville, M. J., Willatt, L., Firth, H. V., Harrison, K., MacKenzie, J., Gallo, N., Morrow, B. E., Shaffer, L. G., Babcock, M., Chernos, J., Bernier, F., Sprysak, K., Christiansen, J., Haase, S., Elyas, B., Lilley, M., Bamforth, S., and McDermid, H. E. (2005) Microduplication and triplication of 22q11.2: a highly variable syndrome Am J Hum Genet 76, 865–876.Google Scholar
  39. 39.
    Ou, Z., Berg, J. S., Yonath, H., Enciso, V. B., Miller, D. T., Picker, J., Lenzi, T., Keegan, C. E., Sutton, V. R., Belmont, J., Chinault, A. C., Lupski, J. R., Cheung, S. W., Roeder, E., and Patel, A. (2008) Microduplications of 22q11.2 are frequently inherited and are associated with variable phenotypes Genet Med 10, 267–277.Google Scholar
  40. 40.
    de Ravel, T. J., Devriendt, K., Fryns, J. P., and Vermeesch, J. R. (2007) What’s new in karyotyping? The move towards array comparative genomic hybridisation (CGH) Eur J Pediatr 166, 637–643.Google Scholar
  41. 41.
    Firth, H. V., Richards, S. M., Bevan, A. P., Clayton, S., Corpas, M., Rajan, D., Van Vooren, S., Moreau, Y., Pettett, R. M., and Carter, N. P. (2009) DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources Am J Hum Genet 84, 524–533.Google Scholar
  42. 42.
    Feenstra, I., Fang, J., Koolen, D. A., Siezen, A., Evans, C., Winter, R. M., Lees, M. M., Riegel, M., de Vries, B. B., Van Ravenswaaij, C. M., and Schinzel, A. (2006) European Cytogeneticists Association Register of Unbalanced Chromosome Aberrations (ECARUCA); an online database for rare chromosome abnormalities Eur J Med Genet 49, 279–291.Google Scholar
  43. 43.
    Shuster, E. (2007) Microarray genetic screening: a prenatal roadblock for life? Lancet 369, 526–529.Google Scholar
  44. 44.
    Kohane, I. S., Masys, D. R., and Altman, R. B. (2006) The incidentalome: a threat to genomic medicine JAMA 296, 212–215.Google Scholar
  45. 45.
    Pergament, E. (2007) Controversies and challenges of array comparative genomic hybridization in prenatal genetic diagnosis Genet Med 9, 596–599.Google Scholar
  46. 46.
    Adams, S. A., Coppinger, J., Saitta, S. C., Stroud, T., Kandamurugu, M., Fan, Z., Ballif, B. C., Shaffer, L. G., and Bejjani, B. A. (2009) Impact of genotype-first diagnosis: the detection of microdeletion and microduplication syndromes with cancer predisposition by aCGH Genet Med 11, 314–322.Google Scholar
  47. 47.
    Darilek, S., Ward, P., Pursley, A., Plunkett, K., Furman, P., Magoulas, P., Patel, A., Cheung, S. W., and Eng, C. M. (2008) Pre- and postnatal genetic testing by array-comparative genomic hybridization: genetic counseling perspectives Genet Med 10, 13–18.Google Scholar
  48. 48.
    Mencarelli, M. A., Katzaki, E., Papa, F. T., Sampieri, K., Caselli, R., Uliana, V., Pollazzon, M., Canitano, R., Mostardini, R., Grosso, S., Longo, I., Ariani, F., Meloni, I., Hayek, J., Balestri, P., Mari, F., and Renieri, A. (2008) Private inherited microdeletion/microduplications: implications in clinical practice Eur J Med Genet 51, 409–416.Google Scholar
  49. 49.
    Warburton, D. (1991) De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints Am J Hum Genet 49, 995–1013.Google Scholar
  50. 50.
    Giardino, D., Corti, C., Ballarati, L., Colombo, D., Sala, E., Villa, N., Piombo, G., Pierluigi, M., Faravelli, F., Guerneri, S., Coviello, D., Lalatta, F., Cavallari, U., Bellotti, D., Barlati, S., Croci, G., Franchi, F., Savin, E., Nocera, G., Amico, F. P., Granata, P., Casalone, R., Nutini, L., Lisi, E., Torricelli, F., Giussani, U., Facchinetti, B., Guanti, G., Di, G. M., Susca, F. P., Pecile, V., Romitti, L., Cardarelli, L., Racalbuto, E., Police, M. A., Chiodo, F., Rodeschini, O., Falcone, P., Donti, E., Grimoldi, M. G., Martinoli, E., Stioui, S., Caufin, D., Lauricella, S. A., Tanzariello, S. A., Voglino, G., Lenzini, E., Besozzi, M., Larizza, L., and Dalpra, L. (2009) De novo balanced chromosome rearrangements in prenatal diagnosis Prenat Diagn 29, 257–265.Google Scholar
  51. 51.
    De Gregori, M., Ciccone, R., Magini, P., Pramparo, T., Gimelli, S., Messa, J., Novara, F., Vetro, A., Rossi, E., Maraschio, P., Bonaglia, M. C., Anichini, C., Ferrero, G. B., Silengo, M., Fazzi, E., Zatterale, A., Fischetto, R., Previdere, C., Belli, S., Turci, A., Calabrese, G., Bernardi, F., Meneghelli, E., Riegel, M., Rocchi, M., Guerneri, S., Lalatta, F., Zelante, L., Romano, C., Fichera, M., Mattina, T., Arrigo, G., Zollino, M., Giglio, S., Lonardo, F., Bonfante, A., Ferlini, A., Cifuentes, F., Van, E. H., Backx, L., Schinzel, A., Vermeesch, J. R., and Zuffardi, O. (2007) Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients J Med Genet 44, 750–762.Google Scholar
  52. 52.
    Baptista, J., Mercer, C., Prigmore, E., Gribble, S. M., Carter, N. P., Maloney, V., Thomas, N. S., Jacobs, P. A., and Crolla, J. A. (2008) Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort Am J Hum Genet 82, 927–936.Google Scholar
  53. 53.
    Schluth-Bolard, C., Delobel, B., Sanlaville, D., Boute, O., Cuisset, J. M., Sukno, S., Labalme, A., Duban-Bedu, B., Plessis, G., Jaillard, S., Dubourg, C., Henry, C., Lucas, J., Odent, S., Pasquier, L., Copin, H., Latour, P., Cordier, M. P., Nadeau, G., Till, M., Edery, P., and Andrieux, J. (2009) Cryptic genomic imbalances in de novo and inherited apparently balanced chromosomal rearrangements: array CGH study of 47 unrelated cases Eur J Med Genet 52, 291–296.Google Scholar
  54. 54.
    Ballif, B. C., Kashork, C. D., Saleki, R., Rorem, E., Sundin, K., Bejjani, B. A., and Shaffer, L. G. (2006) Detecting sex chromosome anomalies and common triploidies in products of conception by array-based comparative genomic hybridization Prenat Diagn 26, 333–339.Google Scholar
  55. 55.
    Ballif, B. C., Rorem, E. A., Sundin, K., Lincicum, M., Gaskin, S., Coppinger, J., Kashork, C. D., Shaffer, L. G., and Bejjani, B. A. (2006) Detection of low-level mosaicism by array CGH in routine diagnostic specimens Am J Med Genet A 140, 2757–2767.Google Scholar
  56. 56.
    Hassold, T., Chen, N., Funkhouser, J., Jooss, T., Manuel, B., Matsuura, J., Matsuyama, A., Wilson, C., Yamane, J. A., and Jacobs, P. A. (1980) A cytogenetic study of 1000 spontaneous abortions Ann Hum Genet 44, 151–178.Google Scholar
  57. 57.
    Hassold, T. J. (1980) A cytogenetic study of repeated spontaneous abortions Am J Hum Genet 32, 723–730.Google Scholar
  58. 58.
    Goddijn, M. and Leschot, N. J. (2000) Genetic aspects of miscarriage Baillieres Best Pract Res Clin Obstet Gynaecol 14, 855–865.Google Scholar
  59. 59.
    Bell, K. A., Van Deerlin, P. G., Haddad, B. R., and Feinberg, R. F. (1999) Cytogenetic diagnosis of “normal 46,XX” karyotypes in spontaneous abortions frequently may be misleading Fertil Steril 71, 334–341.Google Scholar
  60. 60.
    Schaeffer, A. J., Chung, J., Heretis, K., Wong, A., Ledbetter, D. H., and Lese, M. C. (2004) Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages Am J Hum Genet 74, 1168–1174.Google Scholar
  61. 61.
    Benkhalifa, M., Kasakyan, S., Clement, P., Baldi, M., Tachdjian, G., Demirol, A., Gurgan, T., Fiorentino, F., Mohammed, M., and Qumsiyeh, M. B. (2005) Array comparative genomic hybridization profiling of first-trimester spontaneous abortions that fail to grow in vitro Prenat Diagn 25, 894–900.Google Scholar
  62. 62.
    Shimokawa, O., Harada, N., Miyake, N., Satoh, K., Mizuguchi, T., Niikawa, N., and Matsumoto, N. (2006) Array comparative genomic hybridization analysis in first-trimester spontaneous abortions with ‘normal’ karyotypes Am J Med Genet A 140, 1931–1935.Google Scholar
  63. 63.
    Robberecht, C., Schuddinck, V., Fryns, J. P., and Vermeesch, J. R. (2009) Diagnosis of miscarriages by molecular karyotyping: benefits and pitfalls Genet Med 11, 646–654.Google Scholar
  64. 64.
    Handyside, A. H., Kontogianni, E. H., Hardy, K., and Winston, R. M. (1990) Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification Nature 344, 768–770.Google Scholar
  65. 65.
    Wells, D., Sherlock, J. K., Handyside, A. H., and Delhanty, J. D. (1999) Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridisation Nucleic Acids Res 27, 1214–1218.Google Scholar
  66. 66.
    Le Caignec, C., Spits, C., Sermon, K., De Rycke, M., Thienpont, B., Debrock, S., Staessen, C., Moreau, Y., Fryns, J. P., Van Steirteghem, A., Liebaers, I., and Vermeesch, J. R. (2006) Single-cell chromosomal imbalances detection by array CGH Nucleic Acids Res 34, e68-Google Scholar
  67. 67.
    Fiegler, H., Geigl, J. B., Langer, S., Rigler, D., Porter, K., Unger, K., Carter, N. P., and Speicher, M. R. (2007) High resolution array-CGH analysis of single cells Nucleic Acids Res 35, e15-Google Scholar
  68. 68.
    Handyside, A. H., Robinson, M. D., Simpson, R. J., Omar, M. B., Shaw, M. A., Grudzinskas, J. G., and Rutherford, A. (2004) Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease Mol Hum Reprod 10, 767–772.Google Scholar
  69. 69.
    Vanneste, E., Voet, T., Le Caignec, C., Ampe, M., Konings, P., Melotte, C., Debrock, S., Amyere, M., Vikkula, M., Schuit, F., Fryns, J. P., Verbeke, G., D’Hooghe, T., Moreau, Y., and Vermeesch, J. R. (2009) Chromosome instability is common in human cleavage-stage embryos Nat Med 15, 577–583.Google Scholar
  70. 70.
    Vanneste, E., Voet, T., Melotte, C., Debrock, S., Sermon, K., Staessen, C., Liebaers, I., Fryns, J. P., D’Hooghe, T., and Vermeesch, J. R. (2009) What next for preimplantation genetic screening? High mitotic chromosome instability rate provides the biological basis for the low success rate Hum Reprod 24, 2679–2682.Google Scholar
  71. 71.
    Hellani, A., Abu-Amero, K., Azouri, J., and El-Akoum, S. (2008) Successful pregnancies after application of array-comparative genomic hybridization in PGS-aneuploidy screening Reprod Biomed Online 17, 841–847.Google Scholar
  72. 72.
    Handyside, A. H., Harton, G. L., Mariani, B., Thornhill, A. R., Affara, N. A., Shaw, M. A., and Griffin, D. K. (2009) Karyomapping: a Universal Method for Genome Wide Analysis of Genetic Disease based on Mapping Crossovers between Parental Haplotypes J Med Genet Google Scholar
  73. 73.
    Kleeman, L., Bianchi, D., Shaffer, L. G., Rorem, E., Cowan, J., Craigo, S. D., Tighiouart, H., and Wilkins-Haug, L. E. (2009) Use of array comparative genomic hybridization for prenatal diagnosis of fetuses with sonographic anomalies and normal metaphase karyotype Prenat Diagn Google Scholar
  74. 74.
    Vialard, F., Molina Gomes, D., Leroy, B., Quarello, E., Escalona, A., Le Sciellour, C., Serazin, V., Roume, J., Ville, Y., de Mazancourt, P., and Selva, J. (2009) Array comparative genomic hybridization in prenatal diagnosis: another experience Fetal Diagn Ther 25, 277–284.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Paul D. Brady
    • 1
  • Koenraad Devriendt
    • 1
  • Jan Deprest
    • 2
  • Joris R. Vermeesch
    • 1
  1. 1.Centre for Human Genetics, K.U. LeuvenLeuvenBelgium
  2. 2.Foetal Medicine UnitUniversity Hospital LeuvenLeuvenBelgium

Personalised recommendations