Structural Variation in Subtelomeres

Part of the Methods in Molecular Biology book series (MIMB, volume 838)


Subtelomeres are an incredibly dynamic part of the human genome located at the ends of chromosomes just proximal to telomere repeats. Although subtelomeric variation contributes to normal polymorphism in the human genome and is a by-product of rapid evolution in these regions, rearrangements in subtelomeres can also cause intellectual disabilities and birth defects, making robust methods of detecting copy number variation in chromosome ends a must for cytogenetics labs. In recent years, methods for detecting structural variation in subtelomeres have moved from fluorescence in situ hybridization (FISH) to array technology; however, FISH is still necessary to determine the chromosomal structure of subtelomeric gains and losses identified by arrays.

Key words

Subtelomere Chromosome Array CGH FISH Structural variation Polymorphism CNV 


  1. 1.
    Bailey, J. A., Gu, Z., Clark, R. A., Reinert, K., Samonte, R. V., Schwartz, S., Adams, M. D., Myers, E. W., Li, P. W., and Eichler, E. E. (2002) Recent segmental duplications in the human genome. Science 297, 1003–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Linardopoulou, E. V., Williams, E. M., Fan, Y., Friedman, C., Young, J. M., and Trask, B. J. (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437, 94–100.PubMedCrossRefGoogle Scholar
  3. 3.
    Trask, B. J., Friedman, C., Martin-Gallardo, A., Rowen, L., Akinbami, C., Blankenship, J., Collins, C., Giorgi, D., Iadonato, S., Johnson, F., Kuo, W. L., Massa, H., Morrish, T., Naylor, S., Nguyen, O. T., Rouquier, S., Smith, T., Wong, D. J., Youngblom, J., and van den Engh, G. (1998) Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes. Hum Mol Genet 7, 13–26.PubMedCrossRefGoogle Scholar
  4. 4.
    Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., Cho, E. K., Dallaire, S., Freeman, J. L., Gonzalez, J. R., Gratacos, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J. R., Marshall, C. R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M. J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L., Conrad, D. F., Estivill, X., Tyler-Smith, C., Carter, N. P., Aburatani, H., Lee, C., Jones, K. W., Scherer, S. W., and Hurles, M. E. (2006) Global variation in copy number in the human genome. Nature 444, 444–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Ballif, B. C., Sulpizio, S. G., Lloyd, R. M., Minier, S. L., Theisen, A., Bejjani, B. A., and Shaffer, L. G. (2007) The clinical utility of enhanced subtelomeric coverage in array CGH. Am J Med Genet A 143, 1850–7.Google Scholar
  6. 6.
    Martin, C. L., Nawaz, Z., Baldwin, E. L., Wallace, E. J., Justice, A. N., and Ledbetter, D. H. (2007) The evolution of molecular ruler analysis for characterizing telomere imbalances: from fluorescence in situ hybridization to array comparative genomic hybridization. Genet Med 9, 566–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Ballif, B. C., Kashork, C. D., and Shaffer, L. G. (2000) The promise and pitfalls of telomere region-specific probes. Am J Hum Genet 67, 1356–9.PubMedGoogle Scholar
  8. 8.
    Knight, S. J., Lese, C. M., Precht, K. S., Kuc, J., Ning, Y., Lucas, S., Regan, R., Brenan, M., Nicod, A., Lawrie, N. M., Cardy, D. L., Nguyen, H., Hudson, T. J., Riethman, H. C., Ledbetter, D. H., and Flint, J. (2000) An optimized set of human telomere clones for studying telomere integrity and architecture. Am J Hum Genet 67, 320–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Adeyinka, A., Adams, S. A., Lorentz, C. P., Van Dyke, D. L., and Jalal, S. M. (2005) Subtelomere deletions and translocations are frequently familial. Am J Med Genet A 135, 28–35.PubMedGoogle Scholar
  10. 10.
    Barber, J. C. (2005) Directly transmitted unbalanced chromosome abnormalities and euchromatic variants. J Med Genet 42, 609–29.PubMedCrossRefGoogle Scholar
  11. 11.
    Ravnan, J. B., Tepperberg, J. H., Papenhausen, P., Lamb, A. N., Hedrick, J., Eash, D., Ledbetter, D. H., and Martin, C. L. (2006) Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J Med Genet 43, 478–89.PubMedCrossRefGoogle Scholar
  12. 12.
    Biesecker, L. G. (2002) The end of the beginning of chromosome ends. Am J Med Genet 107, 263–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Shao, L., Shaw, C. A., Lu, X. Y., Sahoo, T., Bacino, C. A., Lalani, S. R., Stankiewicz, P., Yatsenko, S. A., Li, Y., Neill, S., Pursley, A. N., Chinault, A. C., Patel, A., Beaudet, A. L., Lupski, J. R., and Cheung, S. W. (2008) Identification of chromosome abnormalities in subtelomeric regions by microarray analysis: a study of 5,380 cases. Am J Med Genet A 146A, 2242–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Willatt, L., Cox, J., Barber, J., Cabanas, E. D., Collins, A., Donnai, D., FitzPatrick, D. R., Maher, E., Martin, H., Parnau, J., Pindar, L., Ramsay, J., Shaw-Smith, C., Sistermans, E. A., Tettenborn, M., Trump, D., de Vries, B. B., Walker, K., and Raymond, F. L. (2005) 3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome. Am J Hum Genet 77, 154–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Lisi, E. C., Hamosh, A., Doheny, K. F., Squibb, E., Jackson, B., Galczynski, R., Thomas, G. H., and Batista, D. A. (2008) 3q29 interstitial microduplication: a new syndrome in a three-generation family. Am J Med Genet A 146A, 601–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Harada, N., Visser, R., Dawson, A., Fukamachi, M., Iwakoshi, M., Okamoto, N., Kishino, T., Niikawa, N., and Matsumoto, N. (2004) A 1-Mb critical region in six patients with 9q34.3 terminal deletion syndrome. J Hum Genet 49, 440–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Stewart, D. R., Huang, A., Faravelli, F., Anderlid, B. M., Medne, L., Ciprero, K., Kaur, M., Rossi, E., Tenconi, R., Nordenskjold, M., Gripp, K. W., Nicholson, L., Meschino, W. S., Capua, E., Quarrell, O. W., Flint, J., Irons, M., Giampietro, P. F., Schowalter, D. B., Zaleski, C. A., Malacarne, M., Zackai, E. H., Spinner, N. B., and Krantz, I. D. (2004) Subtelomeric deletions of chromosome 9q: a novel microdeletion syndrome. Am J Med Genet A 128A, 340–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Kleefstra, T., Brunner, H. G., Amiel, J., Oudakker, A. R., Nillesen, W. M., Magee, A., Genevieve, D., Cormier-Daire, V., van Esch, H., Fryns, J. P., Hamel, B. C., Sistermans, E. A., de Vries, B. B., and van Bokhoven, H. (2006) Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet 79, 370–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Phelan, M. C., Rogers, R. C., Saul, R. A., Stapleton, G. A., Sweet, K., McDermid, H., Shaw, S. R., Claytor, J., Willis, J., and Kelly, D. P. (2001) 22q13 deletion syndrome. Am J Med Genet 101, 91–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Wilson, H. L., Wong, A. C., Shaw, S. R., Tse, W. Y., Stapleton, G. A., Phelan, M. C., Hu, S., Marshall, J., and McDermid, H. E. (2003) Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet 40, 575–84.PubMedCrossRefGoogle Scholar
  21. 21.
    Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., Nygren, G., Rastam, M., Gillberg, I. C., Anckarsater, H., Sponheim, E., Goubran-Botros, H., Delorme, R., Chabane, N., Mouren-Simeoni, M. C., de Mas, P., Bieth, E., Roge, B., Heron, D., Burglen, L., Gillberg, C., Leboyer, M., and Bourgeron, T. (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39, 25–7.PubMedCrossRefGoogle Scholar
  22. 22.
    National Institutes of Health and Institute of Molecular Medicine Collaboration (1996) A complete set of human telomeric probes and their clinical application. Nat Genet 14, 86–9.Google Scholar
  23. 23.
    Knight, S. J., Horsley, S. W., Regan, R., Lawrie, N. M., Maher, E. J., Cardy, D. L., Flint, J., and Kearney, L. (1997) Development and clinical application of an innovative fluorescence in situ hybridization technique which detects submicroscopic rearrangements involving telomeres. Eur J Hum Genet 5, 1–8.PubMedGoogle Scholar
  24. 24.
    Knight, S. J., Regan, R., Nicod, A., Horsley, S. W., Kearney, L., Homfray, T., Winter, R. M., Bolton, P., and Flint, J. (1999) Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet 354, 1676–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Baldwin, E. L., Lee, J. Y., Blake, D. M., Bunke, B. P., Alexander, C. R., Kogan, A. L., Ledbetter, D. H., and Martin, C. L. (2008) Enhanced detection of clinically relevant genomic imbalances using a targeted plus whole genome oligonucleotide microarray. Genet Med 10, 415–29.PubMedCrossRefGoogle Scholar
  26. 26.
    Gajecka, M., Pavlicek, A., Glotzbach, C. D., Ballif, B. C., Jarmuz, M., Jurka, J., and Shaffer, L. G. (2006) Identification of sequence motifs at the breakpoint junctions in three t(1;9)(p36.3;q34) and delineation of mechanisms involved in generating balanced translocations. Hum Genet 120, 519–26.PubMedCrossRefGoogle Scholar
  27. 27.
    Gajecka, M., Gentles, A. J., Tsai, A., Chitayat, D., Mackay, K. L., Glotzbach, C. D., Lieber, M. R., and Shaffer, L. G. (2008) Unexpected complexity at breakpoint junctions in phenotypically normal individuals and mechanisms involved in generating balanced translocations t(1;22)(p36;q13). Genome Res 18, 1733–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Yatsenko, S. A., Brundage, E. K., Roney, E. K., Cheung, S. W., Chinault, A. C., and Lupski, J. R. (2009) Molecular mechanisms for subtelomeric rearrangements associated with the 9q34.3 microdeletion syndrome. Hum Mol Genet 18, 1924–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Monfouilloux, S., Avet-Loiseau, H., Amarger, V., Balazs, I., Pourcel, C., and Vergnaud, G. (1998) Recent human-specific spreading of a subtelomeric domain. Genomics 51, 165–76.PubMedCrossRefGoogle Scholar
  30. 30.
    Martin, C. L., Wong, A., Gross, A., Chung, J., Fantes, J. A., and Ledbetter, D. H. (2002) The evolutionary origin of human subtelomeric homologies – or where the ends begin. Am J Hum Genet 70, 972–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Rudd, M. K., Friedman, C., Parghi, S. S., Linardopoulou, E. V., Hsu, L., and Trask, B. J. (2007) Elevated rates of sister chromatid exchange at chromosome ends. PLoS Genet 3, e32.PubMedCrossRefGoogle Scholar
  32. 32.
    Rudd, M. K., Endicott, R. M., Friedman, C., Walker, M., Young, J. M., Osoegawa, K., de Jong, P. J., Green, E. D., and Trask, B. J. (2009) Comparative sequence analysis of primate subtelomeres originating from a chromosome fission event. Genome Res 19, 33–41.PubMedCrossRefGoogle Scholar
  33. 33.
    Itsara, A., Cooper, G. M., Baker, C., Girirajan, S., Li, J., Absher, D., Krauss, R. M., Myers, R. M., Ridker, P. M., Chasman, D. I., Mefford, H., Ying, P., Nickerson, D. A., and Eichler, E. E. (2009) Population analysis of large copy number variants and hotspots of human genetic disease. Am J Hum Genet 84, 148–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang, K., Chen, Z., Tadesse, M. G., Glessner, J., Grant, S. F., Hakonarson, H., Bucan, M., and Li, M. (2008) Modeling genetic inheritance of copy number variations. Nucleic Acids Res 36, e138.PubMedCrossRefGoogle Scholar
  35. 35.
    Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S. F., Hakonarson, H., and Bucan, M. (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17, 1665–74.PubMedCrossRefGoogle Scholar
  36. 36.
    Baptista, J., Mercer, C., Prigmore, E., Gribble, S. M., Carter, N. P., Maloney, V., Thomas, N. S., Jacobs, P. A., and Crolla, J. A. (2008) Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet 82, 927–36.PubMedCrossRefGoogle Scholar
  37. 37.
    McClintock, B. (1941) The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics 26, 234–82.PubMedGoogle Scholar
  38. 38.
    Ballif, B. C., Yu, W., Shaw, C. A., Kashork, C. D., and Shaffer, L. G. (2003) Monosomy 1p36 breakpoint junctions suggest pre-meiotic breakage-fusion-bridge cycles are involved in generating terminal deletions. Hum Mol Genet 12, 2153–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Stetten, G., Charity, L. L., Kasch, L. M., Scott, A. F., Berman, C. L., Pressman, E., and Blakemore, K. J. (1997) A paternally derived inverted duplication of 7q with evidence of a telomeric deletion. Am J Med Genet 68, 76–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Jenderny, J., Poetsch, M., Hoeltzenbein, M., Friedrich, U., and Jauch, A. (1998) Detection of a concomitant distal deletion in an inverted duplication of chromosome 3. Is there an overall mechanism for the origin of such duplications/deficiencies? Eur J Hum Genet 6, 439–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Bonaglia, M. C., Giorda, R., Poggi, G., Raggi, M. E., Rossi, E., Baroncini, A., Giglio, S., Borgatti, R., and Zuffardi, O. (2000) Inverted duplications are recurrent rearrangements always associated with a distal deletion: description of a new case involving 2q. Eur J Hum Genet 8, 597–603.PubMedCrossRefGoogle Scholar
  42. 42.
    Cotter, P. D., Kaffe, S., Li, L., Gershin, I. F., and Hirschhorn, K. (2001) Loss of subtelomeric sequence associated with a terminal inversion duplication of the short arm of chromosome 4. Am J Med Genet 102, 76–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Human GeneticsEmory University School of MedicineAtlantaUSA

Personalised recommendations