Genomic Structural Variants pp 311-328

Part of the Methods in Molecular Biology book series (MIMB, volume 838)

Targeted Screening and Validation of Copy Number Variations

  • Shana Ceulemans
  • Karlijn van der Ven
  • Jurgen Del-Favero


The accessibility of genome-wide screening technologies considerably facilitated the identification and characterization of copy number variations (CNVs). The increasing amount of available data describing these variants, clearly demonstrates their abundance in the human genome. This observation shows that not only SNPs, but also CNVs and other structural variants strongly contribute to genetic variation. Even though not all structural variants have an obvious phenotypic effect, there is evidence that CNVs influence gene dosage and hence can have profound effects on human disease susceptibility, disease manifestation, and disease severity. Therefore, CNV screening and analysis methodologies, specifically focusing on disease-related CNVs are actively progressing. This chapter specifically describes different techniques currently available for the targeted screening and validation of CNVs. We not only provide an overview of all these CNV analysis methods, but also address their strong and weak points. Methods covered include fluorescence in situ hybridization (FISH), quantitative real-time PCR (qPCR), paralogue ratio test (PRT), molecular copy-number counting (MCC), and multiplex PCR-based approaches, such as multiplex amplifiable probe hybridization (MAPH), multiplex ligation-dependent probe amplification (MLPA), multiplex PCR-based real-time invader assay (mPCR-RETINA), quantitative multiplex PCR of short fluorescent fragments (QMPSF), and multiplex amplicon quantification (MAQ). We end with some general remarks and conclusions, furthermore briefly addressing the future perspectives.

Key words

Copy number variation CNV analysis CNV validation Targeted screening 


  1. 1.
    Henrichsen,C.N., Chaignat,E. and Reymond,A. (2009) Copy number variants, diseases and gene expression. Hum.Mol.Genet., 18, R1–R8.PubMedCrossRefGoogle Scholar
  2. 2.
    Feuk,L., Carson,A.R. and Scherer,S.W. (2006) Structural variation in the human genome. Nat.Rev.Genet., 7, 85–97.PubMedCrossRefGoogle Scholar
  3. 3.
    Beckmann,J.S., Sharp,A.J. and Antonarakis,S.E. (2008) CNVs and genetic medicine (excitement and consequences of a rediscovery). Cytogenet.Genome Res., 123, 7–16.PubMedCrossRefGoogle Scholar
  4. 4.
    Lachman,H.M. (2008) Copy variations in schizophrenia and bipolar disorder. Cytogenet.Genome Res., 123, 27–35.PubMedCrossRefGoogle Scholar
  5. 5.
    de Smith,A.J., Walters,R.G., Froguel,P. and Blakemore,A.I. (2008) Human genes involved in copy number variation: mechanisms of origin, functional effects and implications for disease. Cytogenet.Genome Res., 123, 17–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Stranger,B.E., Forrest,M.S., Dunning,M., Ingle,C.E., Beazley,C., Thorne,N., Redon,R., Bird,C.P., de Grassi,A., Lee,C. et al. (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science, 315, 848–853.PubMedCrossRefGoogle Scholar
  7. 7.
    Gu,W. and Lupski,J.R. (2008) CNV and nervous system diseases – what’s new? Cytogenet.Genome Res., 123, 54–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Pinkel,D., Segraves,R., Sudar,D., Clark,S., Poole,I., Kowbel,D., Collins,C., Kuo,W.L., Chen,C., Zhai,Y. et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat.Genet., 20, 207–211.PubMedCrossRefGoogle Scholar
  9. 9.
    Komura,D., Shen,F., Ishikawa,S., Fitch,K.R., Chen,W., Zhang,J., Liu,G., Ihara,S., Nakamura,H., Hurles,M.E. et al. (2006) Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res., 16, 1575–1584.PubMedCrossRefGoogle Scholar
  10. 10.
    Yau,C. and Holmes,C.C. (2008) CNV discovery using SNP genotyping arrays. Cytogenet.Genome Res., 123, 307–312.PubMedCrossRefGoogle Scholar
  11. 11.
    Yoon,S., Xuan,Z., Makarov,V., Ye,K. and Sebat,J. (2009) Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res., 19, 1586–1592.PubMedCrossRefGoogle Scholar
  12. 12.
    Iafrate,A.J., Feuk,L., Rivera,M.N., Listewnik,M.L., Donahoe,P.K., Qi,Y., Scherer,S.W. and Lee,C. (2004) Detection of large-scale variation in the human genome. Nat.Genet., 36, 949–951.PubMedCrossRefGoogle Scholar
  13. 13.
    Sebat,J., Lakshmi,B., Troge,J., Alexander,J., Young,J., Lundin,P., Maner,S., Massa,H., Walker,M., Chi,M. et al. (2004) Large-scale copy number polymorphism in the human genome. Science, 305, 525–528.PubMedCrossRefGoogle Scholar
  14. 14.
    Wu,X. and Xiao,H. (2009) Progress in the detection of human genome structural variations. Sci.China C.Life Sci., 52, 560–567.Google Scholar
  15. 15.
    Patsalis,P.C., Evangelidou,P., Charalambous,S. and Sismani,C. (2004) Fluorescence in situ hybridization characterization of apparently balanced translocation reveals cryptic complex chromosomal rearrangements with unexpected level of complexity. Eur.J.Hum.Genet., 12, 647–653.PubMedCrossRefGoogle Scholar
  16. 16.
    Florijn,R.J., Bonden,L.A., Vrolijk,H., Wiegant,J., Vaandrager,J.W., Baas,F., Den Dunnen,J.T., Tanke,H.J., van Ommen,G.J. and Raap,A.K. (1995) High-resolution DNA Fiber-FISH for genomic DNA mapping and colour bar-coding of large genes. Hum.Mol.Genet., 4, 831–836.PubMedCrossRefGoogle Scholar
  17. 17.
    Wilke,K., Duman,B. and Horst,J. (2000) Diagnosis of haploidy and triploidy based on measurement of gene copy number by real-time PCR. Hum.Mutat., 16, 431–436.PubMedCrossRefGoogle Scholar
  18. 18.
    Solinas,A., Brown,L.J., McKeen,C., Mellor,J.M., Nicol,J., Thelwell,N. and Brown,T. (2001) Duplex Scorpion primers in SNP analysis and FRET applications. Nucleic Acids Res., 29, E96.PubMedCrossRefGoogle Scholar
  19. 19.
    Shengqi,W., Xiaohong,W., Suhong,C. and Wei,G. (2002) A new fluorescent quantitative polymerase chain reaction technique. Anal.Biochem., 309, 206–211.PubMedCrossRefGoogle Scholar
  20. 20.
    Klein,D. (2002) Quantification using real-time PCR technology: applications and limitations. Trends Mol.Med., 8, 257–260.PubMedCrossRefGoogle Scholar
  21. 21.
    Simpson,D.A., Feeney,S., Boyle,C. and Stitt,A.W. (2000) Retinal VEGF mRNA measured by SYBR green I fluorescence: A versatile approach to quantitative PCR. Mol.Vis., 6, 178–183.PubMedGoogle Scholar
  22. 22.
    Lee,J.H. and Jeon,J.T. (2008) Methods to detect and analyze copy number variations at the genome-wide and locus-specific levels. Cytogenet.Genome Res., 123, 333–342.PubMedCrossRefGoogle Scholar
  23. 23.
    Weaver,S., Dube,S., Mir,A., Qin,J., Sun,G., Ramakrishnan,R., Jones,R.C. and Livak,K.J. (2010) Taking qPCR to a higher level: Analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution. Methods, 50, 271–276.Google Scholar
  24. 24.
    Norskov,M.S., Frikke-Schmidt,R., Loft,S. and Tybjaerg-Hansen,A. (2009) High-throughput genotyping of copy number variation in glutathione S-transferases M1 and T1 using real-time PCR in 20,687 individuals. Clin.Biochem., 42, 201–209.PubMedCrossRefGoogle Scholar
  25. 25.
    Rose-Zerilli,M.J., Barton,S.J., Henderson,A.J., Shaheen,S.O. and Holloway,J.W. (2009) Copy-number variation genotyping of GSTT1 and GSTM1 gene deletions by real-time PCR. Clin.Chem., 55, 1680–1685.PubMedCrossRefGoogle Scholar
  26. 26.
    Weksberg,R., Hughes,S., Moldovan,L., Bassett,A.S., Chow,E.W. and Squire,J.A. (2005) A method for accurate detection of genomic microdeletions using real-time quantitative PCR. BMC.Genomics, 6, 180.PubMedCrossRefGoogle Scholar
  27. 27.
    Wu,Y.L., Savelli,S.L., Yang,Y., Zhou,B., Rovin,B.H., Birmingham,D.J., Nagaraja,H.N., Hebert,L.A. and Yu,C.Y. (2007) Sensitive and specific real-time polymerase chain reaction assays to accurately determine copy number variations (CNVs) of human complement C4A, C4B, C4-long, C4-short, and RCCX modules: elucidation of C4 CNVs in 50 consanguineous subjects with defined HLA genotypes. J.Immunol., 179, 3012–3025.PubMedGoogle Scholar
  28. 28.
    Nuytten,H., Wlodarska,I., Nackaerts,K., Vermeire,S., Vermeesch,J., Cassiman,J.J. and Cuppens,H. (2009) Accurate determination of copy number variations (CNVs): application to the alpha- and beta-defensin CNVs. J.Immunol.Methods, 344, 35–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Gouas,L., Goumy,C., Veronese,L., Tchirkov,A. and Vago,P. (2008) Gene dosage methods as diagnostic tools for the identification of chromosome abnormalities. Pathol.Biol.(Paris), 56, 345–353.CrossRefGoogle Scholar
  30. 30.
    Armour,J.A., Palla,R., Zeeuwen,P.L., den Heijer,M., Schalkwijk,J. and Hollox,E.J. (2007) Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats. Nucleic Acids Res., 35, e19.PubMedCrossRefGoogle Scholar
  31. 31.
    Dear,P.H. and Cook,P.R. (1993) Happy mapping: linkage mapping using a physical analogue of meiosis. Nucleic Acids Res., 21, 13–20.PubMedCrossRefGoogle Scholar
  32. 32.
    McCaughan,F. and Dear,P.H. (2010) Single-molecule genomics. J.Pathol., 220, 297–306.PubMedGoogle Scholar
  33. 33.
    Daser,A., Thangavelu,M., Pannell,R., Forster,A., Sparrow,L., Chung,G., Dear,P.H. and Rabbitts,T.H. (2006) Interrogation of genomes by molecular copy-number counting (MCC). Nat.Methods, 3, 447–453.PubMedCrossRefGoogle Scholar
  34. 34.
    McCaughan,F. (2009) Molecular copy-number counting: potential of single-molecule diagnostics. Expert.Rev.Mol.Diagn., 9, 309–312.PubMedCrossRefGoogle Scholar
  35. 35.
    McCaughan,F., Darai-Ramqvist,E., Bankier,A.T., Konfortov,B.A., Foster,N., George,P.J., Rabbitts,T.H., Kost-Alimova,M., Rabbitts,P.H. and Dear,P.H. (2008) Microdissection molecular copy-number counting (microMCC)–unlocking cancer archives with digital PCR. J.Pathol., 216, 307–316.PubMedCrossRefGoogle Scholar
  36. 36.
    Qin,J., Jones,R.C. and Ramakrishnan,R. (2008) Studying copy number variations using a nanofluidic platform. Nucleic Acids Res., 36, e116.PubMedCrossRefGoogle Scholar
  37. 37.
    Armour,J.A., Sismani,C., Patsalis,P.C. and Cross,G. (2000) Measurement of locus copy number by hybridisation with amplifiable probes. Nucleic Acids Res., 28, 605–609.PubMedCrossRefGoogle Scholar
  38. 38.
    Hollox,E.J., Atia,T., Cross,G., Parkin,T. and Armour,J.A. (2002) High throughput screening of human subtelomeric DNA for copy number changes using multiplex amplifiable probe hybridisation (MAPH). J.Med.Genet., 39, 790–795.PubMedCrossRefGoogle Scholar
  39. 39.
    Patsalis,P.C., Kousoulidou,L., Sismani,C., Mannik,K. and Kurg,A. (2005) MAPH: from gels to microarrays. Eur.J.Med.Genet., 48, 241–249.PubMedCrossRefGoogle Scholar
  40. 40.
    Gibbons,B., Datta,P., Wu,Y., Chan,A. and Al Armour,J. (2006) Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA. BMC.Genomics, 7, 163.Google Scholar
  41. 41.
    Sellner,L.N. and Taylor,G.R. (2004) MLPA and MAPH: new techniques for detection of gene deletions. Hum.Mutat., 23, 413–419.PubMedCrossRefGoogle Scholar
  42. 42.
    Kousoulidou,L., Mannik,K., Sismani,C., Zilina,O., Parkel,S., Puusepp,H., Tonisson,N., Palta,P., Remm,M., Kurg,A. et al. (2008) Array-MAPH: a methodology for the detection of locus copy-number changes in complex genomes. Nat.Protoc., 3, 849–865.PubMedCrossRefGoogle Scholar
  43. 43.
    Patsalis,P.C., Kousoulidou,L., Mannik,K., Sismani,C., Zilina,O., Parkel,S., Puusepp,H., Tonisson,N., Palta,P., Remm,M. et al. (2007) Detection of small genomic imbalances using microarray-based multiplex amplifiable probe hybridization. Eur.J.Hum.Genet., 15, 162–172.PubMedCrossRefGoogle Scholar
  44. 44.
    Tyson,J., Majerus,T.M., Walker,S. and Armour,J.A. (2009) Quadruplex MAPH: improvement of throughput in high-resolution copy number screening. BMC.Genomics, 10, 453.PubMedCrossRefGoogle Scholar
  45. 45.
    Schouten,J.P., McElgunn,C.J., Waaijer,R., Zwijnenburg,D., Diepvens,F. and Pals,G. (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res., 30, e57.PubMedCrossRefGoogle Scholar
  46. 46.
    White,S.J., Vink,G.R., Kriek,M., Wuyts,W., Schouten,J., Bakker,B., Breuning,M.H. and Den Dunnen,J.T. (2004) Two-color multiplex ligation-dependent probe amplification: detecting genomic rearrangements in hereditary multiple exostoses. Hum.Mutat., 24, 86–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Stern,R.F., Roberts,R.G., Mann,K., Yau,S.C., Berg,J. and Ogilvie,C.M. (2004) Multiplex ligation-dependent probe amplification using a completely synthetic probe set. Biotechniques, 37, 399–405.PubMedGoogle Scholar
  48. 48.
    Kozlowski,P., Roberts,P., Dabora,S., Franz,D., Bissler,J., Northrup,H., Au,K.S., Lazarus,R., Domanska-Pakiela,D., Kotulska,K. et al. (2007) Identification of 54 large deletions/duplications in TSC1 and TSC2 using MLPA, and genotype–phenotype correlations. Hum.Genet., 121, 389–400.PubMedCrossRefGoogle Scholar
  49. 49.
    Kozlowski,P., Jasinska,A.J. and Kwiatkowski,D.J. (2008) New applications and developments in the use of multiplex ligation-dependent probe amplification. Electrophoresis, 29, 4627–4636.PubMedCrossRefGoogle Scholar
  50. 50.
    Nygren,A.O., Ameziane,N., Duarte,H.M., Vijzelaar,R.N., Waisfisz,Q., Hess,C.J., Schouten,J.P. and Errami,A. (2005) Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res., 33, e128.PubMedCrossRefGoogle Scholar
  51. 51.
    Isaksson,M., Stenberg,J., Dahl,F., Thuresson,A.C., Bondeson,M.L. and Nilsson,M. (2007) MLGA – a rapid and cost-efficient assay for gene copy-number analysis. Nucleic Acids Res., 35, e115.PubMedCrossRefGoogle Scholar
  52. 52.
    Zeng,F., Ren,Z.R., Huang,S.Z., Kalf,M., Mommersteeg,M., Smit,M., White,S., Jin,C.L., Xu,M., Zhou,D.W. et al. (2008) Array-MLPA: comprehensive detection of deletions and duplications and its application to DMD patients. Hum.Mutat., 29, 190–197.PubMedCrossRefGoogle Scholar
  53. 53.
    Charbonnier,F., Raux,G., Wang,Q., Drouot,N., Cordier,F., Limacher,J.M., Saurin,J.C., Puisieux,A., Olschwang,S. and Frebourg,T. (2000) Detection of exon deletions and duplications of the mismatch repair genes in hereditary nonpolyposis colorectal cancer families using multiplex polymerase chain reaction of short fluorescent fragments. Cancer Res., 60, 2760–2763.PubMedGoogle Scholar
  54. 54.
    Sleegers,K., Brouwers,N., Gijselinck,I., Theuns,J., Goossens,D., Wauters,J., Del Favero,J., Cruts,M., Van Duijn,C.M. and Van Broeckhoven,C. (2006) APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy. Brain, 129, 2977–2983.PubMedCrossRefGoogle Scholar
  55. 55.
    Suls,A., Claeys,K.G., Goossens,D., Harding,B., Van Luijk,R., Scheers,S., Deprez,L., Audenaert,D., Van Dyck,T., Beeckmans,S. et al. (2006) Microdeletions involving the SCN1A gene may be common in SCN1A-mutation-negative SMEI patients. Hum.Mutat., 27, 914–920.PubMedCrossRefGoogle Scholar
  56. 56.
    Sutrala,S.R., Goossens,D., Williams,N.M., Heyrman,L., Adolfsson,R., Norton,N., Buckland,P.R. and Del-Favero,J. (2007) Gene copy number variation in schizophrenia. Schizophr.Res., 96, 93–99.PubMedCrossRefGoogle Scholar
  57. 57.
    Aten,E., White,S.J., Kalf,M.E., Vossen,R.H., Thygesen,H.H., Ruivenkamp,C.A., Kriek,M., Breuning,M.H. and Den Dunnen,J.T. (2008) Methods to detect CNVs in the human genome. Cytogenet.Genome Res., 123, 313–321.PubMedCrossRefGoogle Scholar
  58. 58.
    Sieben,V.J., Debes Marun,C.S., Pilarski,P.M., Kaigala,G.V., Pilarski,L.M. and Backhouse,C.J. (2007) FISH and chips: chromosomal analysis on microfluidic platforms. IET.Nanobiotechnol., 1, 27–35.Google Scholar
  59. 59.
    Sieben,V.J., Debes-Marun,C.S., Pilarski,L.M. and Backhouse,C.J. (2008) An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. Lab Chip., 8, 2151–2156.PubMedCrossRefGoogle Scholar
  60. 60.
    Geiss,G.K., Bumgarner,R.E., Birditt,B., Dahl,T., Dowidar,N., Dunaway,D.L., Fell,H.P., Ferree,S., George,R.D., Grogan,T. et al. (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat.Biotechnol., 26, 317–325.PubMedCrossRefGoogle Scholar
  61. 61.
    Korbel,J.O., Urban,A.E., Affourtit,J.P., Godwin,B., Grubert,F., Simons,J.F., Kim,P.M., Palejev,D., Carriero,N.J., Du,L. et al. (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science, 318, 420–426.PubMedCrossRefGoogle Scholar
  62. 62.
    Goossens,D., Moens,L.N., Nelis,E., Lenaerts,A.S., Glassee,W., Kalbe,A., Frey,B., Kopal,G., De Jonghe,P., De Rijk,P. et al. (2009) Simultaneous mutation and copy number variation (CNV) detection by multiplex PCR-based GS-FLX sequencing. Hum.Mutat., 30, 472–476.PubMedCrossRefGoogle Scholar
  63. 63.
    Tewhey,R., Warner,J.B., Nakano,M., Libby,B., Medkova,M., David,P.H., Kotsopoulos,S.K., Samuels,M.L., Hutchison,J.B., Larson,J.W. et al. (2009) Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat.Biotechnol., 27, 1025–1031.PubMedCrossRefGoogle Scholar
  64. 64.
    Chou,L.S., Liu,C.S., Boese,B., Zhang,X. and Mao,R. (2010) DNA sequence capture and enrichment by microarray followed by next-generation sequencing for targeted resequencing: neurofibromatosis type 1 gene as a model. Clin.Chem., 56, 62–72.PubMedCrossRefGoogle Scholar
  65. 65.
    Ng,S.B., Buckingham,K.J., Lee,C., Bigham,A.W., Tabor,H.K., Dent,K.M., Huff,C.D., Shannon,P.T., Jabs,E.W., Nickerson,D.A. et al. (2010) Exome sequencing identifies the cause of a Mendelian disorder. Nat.Genet., 42, 30–35.PubMedCrossRefGoogle Scholar
  66. 66.
    Raap,A.K., Florijn,R.J., Blonden,L.A.J., Wiegant,J., Vaandrager,J.W., Vrolijk,H., den Dunnen,J., Tanke,H.J. and van Ommen,G.J. (1996) Fiber FISH as a DNA Mapping Tool. Methods, 9, 67–73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Shana Ceulemans
    • 1
    • 2
  • Karlijn van der Ven
    • 1
    • 2
  • Jurgen Del-Favero
    • 3
  1. 1.Applied Molecular Genomics Unit VIB Department of Molecular GeneticsFlandersBelgium
  2. 2.University of Antwerp (UA)AntwerpenBelgium
  3. 3.Applied Molecular Genomics Unit VIB Department of Molecular Genetics, University of Antwerp (UA)AntwerpenBelgium

Personalised recommendations