Population Genetic Nature of Copy Number Variation

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 838)

Abstract

Copy number variation has recently received considerable attention, and copy number variants (CNVs) have been shown to be both common in mammalian genomes and important for understanding genetic and phenotypic variation. As empirical knowledge and detection methods are quickly advancing, evolutionary theories about CNVs are rapidly updated and often revised. Here, we review recent progress on understanding CNVs, and we discuss some key issues for future research. In essence, we discuss four major forces in population genetics, recombination, mutation, selection, and demography, in relation to CNVs.

Key words

Copy number variation Recombination Mutation Selection Demography 

References

  1. 1.
    Lynch, M., and Conery, J.S. (2000) The evolutionary fate and consequences of duplicated genes Science 290, 1151–5.Google Scholar
  2. 2.
    Rubin, G.M., Yandell, M.D., Wortman, J.R., Gabor Miklos, G.L., Nelson, C.R., Hariharan, I.K., Fortini, M.E., Li, P.W., Apweiler, R., Fleischmann, W., Cherry, J.M., Henikoff, S., Skupski, M.P., Misra, S., Ashburner, M., Birney, E., Boguski, M.S., Brody, T., Brokstein, P., Celniker, S.E., Chervitz, S.A., Coates, D., Cravchik, A., Gabrielian, A., Galle, R.F., Gelbart, W.M., George, R.A., Goldstein, L.S., Gong, F., Guan, P., Harris, N.L., Hay, B.A., Hoskins, R.A., Li, J., Li, Z., Hynes, R.O., Jones, S.J., Kuehl, P.M., Lemaitre, B., Littleton, J.T., Morrison, D.K., Mungall, C., O’Farrell, P.H., Pickeral, O.K., Shue, C., Vosshall, L.B., Zhang, J., Zhao, Q., Zheng, X.H., and Lewis, S. (2000) Comparative genomics of the eukaryotes Science 287, 2204–15.Google Scholar
  3. 3.
    International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome Nature 409, 860–921.Google Scholar
  4. 4.
    Zhang, J. (2003) Evolution by gene duplication: an update Trends Ecol Evol 18, 292–8.Google Scholar
  5. 5.
    She, X., Cheng, Z., Zöllner, S., Church, D.M., and Eichler, E.E. (2008) Mouse segmental duplication and copy number variation Nat Genet 40, 909–14.Google Scholar
  6. 6.
    Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., De Montigny, J., Marck, C., Neuvéglise, C., Talla, E., Goffard, N., Frangeul, L., Aigle, M., Anthouard, V., Babour, A., Barbe, V., Barnay, S., Blanchin, S., Beckerich, J.M., Beyne, E., Bleykasten, C., Boisramé, A., Boyer, J., Cattolico, L., Confanioleri, F., De Daruvar, A., Despons, L., Fabre, E., Fairhead, C., Ferry-Dumazet, H., Groppi, A., Hantraye, F., Hennequin, C., Jauniaux, N., Joyet, P., Kachouri, R., Kerrest, A., Koszul, R., Lemaire, M., Lesur, I., Ma, L., Muller, H., Nicaud, J.M., Nikolski, M., Oztas, S., Ozier-Kalogeropoulos, O., Pellenz, S., Potier, S., Richard, G.F., Straub, M.L., Suleau, A., Swennen, D., Tekaia, F., Wésolowski-Louvel, M., Westhof, E., Wirth, B., Zeniou-Meyer, M., Zivanovic, I., Bolotin-Fukuhara, M., Thierry, A., Bouchier, C., Caudron, B., Scarpelli, C., Gaillardin, C., Weissenbach, J., Wincker, P., and Souciet, J.L. (2004) Genome evolution in yeasts Nature 430, 35–44.Google Scholar
  7. 7.
    Parkinson, J., Mitreva, M., Whitton, C., Thomson, M., Daub, J., Martin, J., Schmid, R., Hall, N., Barrell, B., Waterston, R.H., McCarter, J.P., and Blaxter, M.L. (2004) A transcriptomic analysis of the phylum Nematoda Nat Genet 36, 1259–67.Google Scholar
  8. 8.
    Demuth, J.P., De Bie, T., Stajich, J.E., Cristianini, N., and Hahn, M.W. (2006) The evolution of mammalian gene families PLoS One 1, e85.Google Scholar
  9. 9.
    Hahn, M.W., Hanm M.V., and Han, S.G. (2007) Gene family evolution across 12 Drosophila genomes PLoS Genet 3, 2135–46.CrossRefGoogle Scholar
  10. 10.
    Opazo, J.C., Hoffmann, F.G., and Storz, J.F. (2008) Differential loss of embryonic globin genes during the radiation of placental mammals Proc Natl Acad Sci USA 105, 12950–5.Google Scholar
  11. 11.
    Scherer, S.W., Lee, C., Birney, E., Altshuler, D.M., Eichler, E.E., Carter, N.P., Hurles, M.E., and Feuk, L. (2007) Challenges and standards in integrating surveys of structural variation Nat Genet 39, S7–15.Google Scholar
  12. 12.
    Johnson, M.E., Viggiano, L., Bailey, J.A., Abdul-Rauf, M., Goodwin, G., Rocchi, M., and Eichler, E.E. (2001) Positive selection of a gene family during the emergence of humans and African apes Nature 413, 514–19.Google Scholar
  13. 13.
    Nguyen, D.Q., Webber, C., and Ponting, C.P. (2006) Bias of selection on human copy-number variants PLoS Genet 2, e20.Google Scholar
  14. 14.
    Heger, A., and Ponting, C. P. (2007) Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes Genome Res 17, 1837–49.PubMedCrossRefGoogle Scholar
  15. 15.
    Perry, G.H., Dominy, N.J., Claw, K.G., Lee, A.S., Fiegler, H., Redon, R., Werner, J., Villanea, F.A., Mountain, J.L., Misra, R., Carter, N.P., Lee, C., and Stone, A.C. (2007) Diet and the evolution of human amylase gene copy number variation Nat Genet 39, 1256–60.Google Scholar
  16. 16.
    Emerson, J.J., Cardoso-Moreira, M., Borevitz, J.O., and Long, M. (2008) Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster Science 320, 1629–31.Google Scholar
  17. 17.
    Xue, Y., Sun, D., Daly, A., Yang, F., Zhou, X., Zhao, M., Huang, N., Zerjal, T., Lee, C., Carter, N.P., Hurles, M.E., and Tyler-Smith, C. (2008) Adaptive evolution of UGT2B17 copy-number variation Am J Hum Genet 83, 337–46.PubMedCrossRefGoogle Scholar
  18. 18.
    Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E., and Pritchard, J.K. (2006) A high-resolution survey of deletion polymorphism in the human genome Nat Genet 38, 75–81.Google Scholar
  19. 19.
    Locke, D.P., Sharp, A.J., McCarroll, S.A., McGrath, S.D., Newman, T.L., Cheng, Z., Schwartz, S., Albertson, D.G., Pinkel, D., Altshuler, D.M, and Eichler, E.E. (2006) Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated regions of the human genome Am J Hum Genet 79, 275–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Dopman, E.B., and Hartl, D.L. (2007) A portrait of copy-number polymorphism in Drosophila melanogaster Proc Natl Acad Sci USA 104, 19920–5.Google Scholar
  21. 21.
    Nguyen, D.Q., Webber, C., Hehir-Kwa, J., Pfundt, R., Veltman, J., and Ponting, C.P. (2008) Reduced purifying selection prevails over positive selection in human copy number variant evolution Genome Res 18, 1711–23.Google Scholar
  22. 22.
    Iafrate, A.J., Feuk, L., Rivera, M.N., Listewnik, M.L., Donahoe, P.K., Qi, Y., Scherer, S.W., and Lee, C. (2004) Detection of large-scale variation in the human genome Nat Genet 36, 949–51.Google Scholar
  23. 23.
    Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Månér, S., Massa, H., Walker, M., Chi, M., Navin, N., Lucito, R., Healy, J., Hicks, J., Ye, K., Reiner, A., Gilliam, T.C., Trask, B., Patterson, N., Zetterberg, A., and Wigler, M. (2004) Large-scale copy number polymorphism in the human genome Science 305, 525–8.Google Scholar
  24. 24.
    Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., Cho, E.K., Dallaire, S., Freeman, J.L., González, J.R., Gratacòs, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J.R., Marshall, C.R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M.J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L., Conrad, D.F., Estivill, X., Tyler-Smith, C., Carter, N.P., Aburatani, H., Lee, C., Jones, K.W., Scherer, S.W., and Hurles, M.E. (2006) Global variation in copy number in the human genome Nature 444, 444–54.Google Scholar
  25. 25.
    Wong, K.K., deLeeuw, R.J., Dosanjh, N.S., Kimm, L.R., Cheng, Z., Horsman, D.E., MacAulay, C., Ng, R.T., Brown, C.J., Eichler, E.E., and Lam, W.L. (2007) A comprehensive analysis of common copy-number variations in the human genome Am J Hum Genet 80, 91–104.PubMedCrossRefGoogle Scholar
  26. 26.
    Lupski, J.R., de Oca-Luna, R.M., Slaugenhaupt, S., Pentao, L., Guzzetta, V., Trask, B.J., Saucedo-Cardenas, O., Barker, D.F., Killian, J.M., Garcia, C.A., Chakravarti, A., and Patel, P.I. (1991) DNA duplication associated with Charcot-Marie-Tooth disease type 1A Cell 66, 219–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M.R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J., and Gwinn-Hardy, K. (2003) α-synuclein locus triplication causes Parkinson’s disease Science 302, 841.Google Scholar
  28. 28.
    Gonzalez, E., Kulkarni, H., Bolivar, H., Mangano, A., Sanchez, R., Catano, G., Nibbs, R.J., Freedman, B.I., Quinones, M.P., Bamshad, M.J., Murthy, K.K., Rovin, B.H., Bradley, W., Clark, R.A., Anderson, S.A., O’connell, R.J., Agan, B.K., Ahuja, S.S., Bologna, R., Sen, L., Dolan, M.J., and Ahuja, S.K. (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility Science 307, 1434–40.Google Scholar
  29. 29.
    Beckmann, J.S., Estivill, X., and Antonarakis, S.E. (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability Nat Rev Genet 8, 639–46.Google Scholar
  30. 30.
    Mefford, H.C., Sharp, A.J., Baker, C., Itsara, A., Jiang, Z., Buysse, K., Huang, S., Maloney, V.K., Crolla, J.A., Baralle, D., Collins, A., Mercer, C., Norga, K., de Ravel, T., Devriendt, K., Bongers, E.M., de Leeuw, N., Reardon, W., Gimelli, S., Bena, F., Hennekam, R.C., Male, A., Gaunt, L., Clayton-Smith, J., Simonic, I., Park, S.M., Mehta, S.G., Nik-Zainal, S., Woods, C.G., Firth, H.V., Parkin, G., Fichera, M., Reitano, S., Lo Giudice, M., Li, K.E., Casuga, I., Broomer, A., Conrad, B., Schwerzmann, M., Räber, L., Gallati, S., Striano, P., Coppola, A., Tolmie, J.L., Tobias, E.S., Lilley, C., Armengol, L., Spysschaert, Y., Verloo, P., De Coene, A., Goossens, L., Mortier, G., Speleman, F., van Binsbergen, E., Nelen, M.R., Hochstenbach, R., Poot, M., Gallagher, L., Gill, M., McClellan, J., King, M.C., Regan, R., Skinner, C., Stevenson, R.E., Antonarakis, S.E., Chen, C., Estivill, X., Menten, B., Gimelli, G., Gribble, S., Schwartz, S., Sutcliffe, J.S., Walsh, T., Knight, S.J., Sebat, J., Romano, C., Schwartz, C.E., Veltman, J.A., de Vries, B.B., Vermeesch, J.R., Barber, J.C., Willatt, L., Tassabehji, M., and Eichler, E.E. (2008) Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes N Engl J Med 359, 1685–99.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang, F., Gu, W., Hurles, M.E., and Lupski, J.R. (2009) Copy number variation in human health, disease, and evolution Annu Rev Genomics Hum Genet 10, 451–81.PubMedCrossRefGoogle Scholar
  32. 32.
    McKim, K.S., Peters, K., and Rose, A.M. (1993) Two types of sites required for meiotic chromosome pairing in Caenorhabditis elegans Genetics 134, 749–68.Google Scholar
  33. 33.
    Hammarlund, M., Davis, M.W., Nguyen, H., Dayton, D., and Jorgensen, E.M. (2005) Heterozygous insertions alter crossover distribution but allow crossover interference in Caenorhabditis elegans Genetics 171, 1047–56.Google Scholar
  34. 34.
    Navarro, A., Betrán, E., Barbadilla, A., and Ruiz, A. (1997) Recombination and gene flux caused by gene conversion and crossing over in inversion heterokaryotypes Genetics 146, 695–709.Google Scholar
  35. 35.
    Shaw, C.J., and Lupski, J.R. (2004) Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease Hum Mol Genet 13, R57–64.Google Scholar
  36. 36.
    Lupski, J.R., and Stankiewicz, P., (2005) Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes PLoS Genet 1, e49.Google Scholar
  37. 37.
    Erdogan, F., Chen, W., Kirchhoff, M., Kalscheuer, V.M., Hultschig, C., Müller, I., Schulz, R., Menzel, C., Bryndorf, T., Ropers, H.H., and Ullmann, R. (2006) Impact of low copy repeats on the generation of balanced and unbalanced chromosomal aberrations in mental retardation Cytogenet Genome Res 115, 247–53.Google Scholar
  38. 38.
    Lindsay, S.J., Khajavi, M., Lupski, J.R., and Hurles, M.E. (2006) A chromosomal rearrangement hotspot can be identified from population genetic variation and is coincident with a hotspot for allelic recombination Am J Hum Genet 79, 890–902.Google Scholar
  39. 39.
    Sun, X., Zhang, Y., Yang, S., Chen, J.Q., Hohn, B., and Tian, D. (2008) Insertion DNA Promotes Ectopic Recombination during Meiosis in Arabidopsis Mol Biol Evol 25, 2079–83.Google Scholar
  40. 40.
    Welz-Voegele, C., and Jinks-Robertson, S. (2008) Sequence divergence impedes crossover more than noncrossover events during mitotic gap repair in yeast Genetics 179, 1251–62.Google Scholar
  41. 41.
    Duret, L., and Galtier, N. (2009) Biased gene conversion and the evolution of mammalian genomic landscapes Annu Rev Genomics Hum Genet 10, 285–311.Google Scholar
  42. 42.
    Lamb, B.C. (1985) The effects of mispair and nonpair correction in hybrid DNA on base ratios (G + C content) and total amounts of DNA Mol Biol Evol 2, 175–88.PubMedGoogle Scholar
  43. 43.
    Bill, C.A., Taghian, D.G., Duran, W.A., and Nickoloff, J.A. (2001) Repair bias of large loop mismatches during recombination in mammalian cells depends on loop length and structure Mutat Res 485, 255–65.Google Scholar
  44. 44.
    White, S.J., Vissers, L.E., Geurts van Kessel, A., de Menezes, R.X., Kalay, E., Lehesjoki, A.E., Giordano, P.C., van de Vosse, E., Breuning, M.H., Brunner, H.G., den Dunnen, J.T., and Veltman, J.A.(2007) Variation of CNV distribution in five different ethnic populations Cytogenet Genome Res 118, 19–30.PubMedCrossRefGoogle Scholar
  45. 45.
    Turner, D.J., Miretti, M., Rajan, D., Fiegler, H., Carter, N.P., Blayney, M.L., Beck, S., and Hurles, M.E. (2008) Germline rates of de novo meiotic deletions and duplications causing several genomic disorders Nat Genet 40, 90–5.Google Scholar
  46. 46.
    Kehrer-Sawatski, H., and Cooper, D.N. (2008) Comparative analysis of copy number variation in primate genomes Cytogenet Genome Res 123, 288–96.Google Scholar
  47. 47.
    Perry, G.H., Tchinda, J., McGrath, S.D., Zhang, J., Picker, S.R., Cáceres, A.M., Iafrate, A.J., Tyler-Smith, C., Scherer, S.W., Eichler, E.E., Stone, A.C., and Lee, C. (2006) Hotspots for copy number variation in chimpanzees and humans Proc Natl Acad Sci USA 103, 8006–11.Google Scholar
  48. 48.
    Ewens, W. J. (2004) Mathematical Population Genetics. Second Revised Edition. Springer-Verlag, New York.Google Scholar
  49. 49.
    Ohta, T., and Kimura, M. (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population Genet Res 22, 201–4.Google Scholar
  50. 50.
    Conrad, D.F., and Hurles, M.E. (2007) The population genetics of structural variation Nat Genet 39, S30–6.Google Scholar
  51. 51.
    Cooper, G.M., Nickerson, D.A., and Eichler, E.E. (2007) Mutational and selective effects on copy-number variants in the human genome Nat Genet 39, S22–9.Google Scholar
  52. 52.
    Marques-Bonet, T., Girirajan, S., and Eichler, E.E. (2009) The origins and impact of primate segmental duplications Trends Genet 25, 443–54.Google Scholar
  53. 53.
    Liu, G.E., Ventura, M., Cellamare, A., Chen, L., Cheng, Z., Zhu, B., Li, C., Song, J., and Eichler, E.E. (2009) Analysis of recent segmental duplications in the bovine genome BMC Genomics 10, 571.Google Scholar
  54. 54.
    Bailey, J.A., Liu, G.E., and Eichler, E.E. (2003) An Alu Transposition Model for the Origin and Expansion of Human Segmental Duplications Am J Hum Genet 73, 823–34.Google Scholar
  55. 55.
    Kim, P.M., Lam, H.Y., Urban, A.E., Korbel, J.O., Affourtit, J., Grubert, F., Chen, X., Weissman, S., Snyder, M., and Gerstein, M.B. (2008) Analysis of copy number variants and segmental duplications in the human genome: Evidence for a change in the process of formation in recent evolutionary history Genome Res 18, 1865–74.Google Scholar
  56. 56.
    Tian, D., Wang, Q., Zhang, P., Araki, H., Yang, S., Kreitman, M., Nagylaki, T., Hudson, R., Bergelson, J., and Chen, J.Q. (2008) Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes Nature 455, 105–8.Google Scholar
  57. 57.
    Petrov, D.A., and Hartl, D.L. (2000) Pseudogene evolution and natural selection for a compact genome J Heredity 91, 221–7.Google Scholar
  58. 58.
    Petrov, D.A. (2002) Mutational Equilibrium Model of Genome Size Evolution Theor Pop Biol 61, 533–46.Google Scholar
  59. 59.
    Taylor, M.S., Ponting, C.P., and Copley, R.R. (2004) Occurrence and Consequences of Coding Sequence Insertions and Deletions in Mammalian Genomes Genome Res 14, 555–66.Google Scholar
  60. 60.
    Taylor, M.S., Kai, C., Kawai, J., Carninci, P., Hayashizaki Y, and Semple, C.A. (2006) Heterotachy in mammalian promoter evolution PLoS Genet 2, e30.PubMedCrossRefGoogle Scholar
  61. 61.
    Kim, J., He, X., and Sinha, S. (2009) Evolution of Regulatory Sequences in 12 Drosophila Species PLoS Genet 5, e1000330.PubMedCrossRefGoogle Scholar
  62. 62.
    Sjödin, P., Bataillon, T., and Schierup, M.H. (2010) Insertion and deletion processes in recent human history PLoS One 5, e8650.Google Scholar
  63. 63.
    Tuzun, E., Sharp, A.J., Bailey, J.A., Kaul, R., Morrison, V.A., Pertz, L.M., Haugen, E., Hayden, H., Albertson, D., Pinkel, D., Olson, M.V., and Eichler, E.E. (2005) Fine-scale structural variation of the human genome Nat Genet 37, 727–32.Google Scholar
  64. 64.
    Nicholas, T.J., Cheng, Z., Ventura, M., Mealey, K., Eichler, E.E., and Akey, J.M. (2009) The genomic architecture of segmental duplications and associated copy number variants in dogs Genome Res 19, 491–9.Google Scholar
  65. 65.
    Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome Nature 420, 520–62.Google Scholar
  66. 66.
    Rat Genome Sequencing Project Consortium (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution Nature 428, 493–521.Google Scholar
  67. 67.
    Conrad, D.F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J., Andrews, T.D., Barnes, C., Campbell, P., Fitzgerald, T., Hu, M., Ihm, C.H., Kristiansson, K., Macarthur, D.G., Macdonald, J.R., Onyiah, I., Pang, A.W., Robson, S., Stirrups, K., Valsesia, A., Walter, K., Wei, J.; The Wellcome Trust Case Control Consortium, Tyler-Smith, C., Carter, N.P., Lee, C., Scherer, S.W., and Hurles, M.E. (2010) Origins and functional impact of copy number variation in the human genome Nature 464, 704–12.Google Scholar
  68. 68.
    Perry, G.H., Yang, F., Marques-Bonet, T., Murphy, C., Fitzgerald, T., Lee, A.S., Hyland, C., Stone, A.C., Hurles, M.E., Tyler-Smith, C., Eichler, E.E., Carter, N.P., Lee, C., and Redon, R. (2008) Copy number variation and evolution in humans and chimpanzees Genome Res 18, 1698–710.Google Scholar
  69. 69.
    Korbel, J.O., Kim, P.M., Chen, X., Urban, A.E., Weissman, S., Snyder, M., and Gerstein, M.B. (2008) The current excitement about copy-number variation: how it relates to gene duplications and protein families Curr Opin Struct Biol 18, 366–74.Google Scholar
  70. 70.
    Rosenberg, N.A., Mahajan, S., Ramachandran, S., Zhao, C., Pritchard, J.K., and Feldman, M.W. (2005) Clines, clusters, and the effect of study design on the inference of human population structure PLoS Genet 1, e70.PubMedCrossRefGoogle Scholar
  71. 71.
    Li, J.Z., Absher, D.M., Tang, H., Southwick, A.M., Casto, A.M., Ramachandran, S., Cann, H.M., Barsh, G.S., Feldman, M., Cavalli-Sforza, L.L., and Myers, R.M. (2008) Worldwide human relationships inferred from genome-wide patterns of variation Science 319, 1100–4.Google Scholar
  72. 72.
    Sharp, A.J., Locke, D.P., McGrath, S.D., Cheng, Z., Bailey, J.A., Vallente, R.U., Pertz, L.M., Clark, R.A., Schwartz, S., Segraves, R., Oseroff, V.V., Albertson, D.G., Pinkel, D., and Eichler, E.E. (2005) Segmental duplications and copy-number variation in the human genome Am J Hum Genet 77, 78–88.Google Scholar
  73. 73.
    Jakobsson, M., Scholz, S.W., Scheet, P., Gibbs, J.R., VanLiere, J.M., Fung, H.C., Szpiech, Z.A., Degnan, J.H., Wang, K., Guerreiro, R., Bras, J.M., Schymick, J.C., Hernandez, D.G., Traynor, B.J., Simon-Sanchez, J., Matarin, M., Britton, A., van de Leemput, J., Rafferty, I., Bucan, M., Cann, H.M., Hardy, J.A., Rosenberg, N.A., and Singleton, A.B. (2008) Genotype, haplotype, and copy-number variation in worldwide human populations Nature 451, 998–1003.PubMedCrossRefGoogle Scholar
  74. 74.
    Wang, C., Szpiech, Z.A., Degnan, J.H., Jakobsson, M., Pemberton, T.J., Hardy, J.A., Singleton, A. B., and Rosenberg, N.A. (2010) Comparing Spatial Maps of Human Population-Genetic Variation Using Procrustes Analysis Stat Appl in Genet and Mol Biol 9, Article 13.Google Scholar
  75. 75.
    Cann, H.M., Cohen, D., and Dausset, J. (1987) Diagnosis of genetic disease by linkage analysis Birth Defects Orig Artic Ser 23, 33–60.Google Scholar
  76. 76.
    Garrigan, D., and Hammer, M.F. (2006) Reconstructing human origins in the genomic era Nat Rev Genet 7, 669–80.Google Scholar
  77. 77.
    The International HapMap Consortium (2005) A haplotype map of the human genome Nature 437, 1299–320.Google Scholar
  78. 78.
    McCarroll, S.A., Hadnott, T.N., Perry, G.H., Sabeti, P.C., Zody, M.C., Barrett, J.C., Dallaire, S., Gabriel, S.B., Lee, C., Daly, M.J., Altshuler, D.M., and International HapMap Consortium (2006) Common deletion polymorphisms in the human genome Nat Genet 38, 86–92.Google Scholar
  79. 79.
    Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S.F., Hakonarson, H., and Bucan, M. (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data Genome Res 17, 1665–74.Google Scholar
  80. 80.
    Kidd, J.M., Cooper, G.M., Donahue, W.F., Hayden, H.S., Sampas, N., Graves, T., Hansen, N., Teague, B., Alkan, C., Antonacci, F., Haugen, E., Zerr, T., Yamada, N.A., Tsang, P., Newman, T.L., Tüzün, E., Cheng, Z., Ebling, H.M., Tusneem, N., David, R., Gillett, W., Phelps, K.A., Weaver, M., Saranga, D., Brand, A., Tao, W., Gustafson, E., McKernan, K., Chen, L., Malig, M., Smith, J.D., Korn, J.M., McCarroll, S.A., Altshuler, D.A., Peiffer, D.A., Dorschner, M., Stamatoyannopoulos, J., Schwartz, D., Nickerson, D.A., Mullikin, J.C., Wilson, R.K., Bruhn, L., Olson, M.V., Kaul, R., Smith, D.R., and Eichler, E.E. (2008) Mapping and sequencing of structural variation from eight human genomes Nature 453, 56–64.Google Scholar
  81. 81.
    Armengol, L., Villatoro, S., González, J.R., Pantano, L., García-Aragonés, M., Rabionet, R., Cáceres, M., and Estivill, X. (2009) Identification of copy number variants defining genomic differences among major human groups PLoS One 4, e7230.Google Scholar
  82. 82.
    Takahashi, N., Satoh, Y., Kodaira, M., and Katayama, H. (2008) Large-scale copy number variants (CNVs) detected in different ethnic human populations Cytogenet Genome Res 123, 224–33.PubMedCrossRefGoogle Scholar
  83. 83.
    Kato, M., Kawaguchi, T., Ishikawa, S., Umeda, T., Nakamichi, R., Shapero, M.H., Jones, K.W., Nakamura, Y., Aburatani, H., and Tsunoda, T. (2010) Population-genetic nature of copy number variations in the human genome Hum Mol Genet 19, 761–73.Google Scholar
  84. 84.
    Hinds, D.A., Kloek, A.P., Jen, M., Chen, X., and Frazer, K.A. (2006) Common deletions and SNPs are in linkage disequilibrium in the human genome Nat Genet 38, 82–5.Google Scholar
  85. 85.
    de Ståhl, T.D., Sandgren, J., Piotrowski, A., Nord, H., Andersson, R., Menzel, U., Bogdan, A., Thuresson, A.C., Poplawski, A., von Tell, D., Hansson, C.M., Elshafie, A.I., Elghazali, G., Imreh, S., Nordenskjöld, M., Upadhyaya, M., Komorowski, J., Bruder, C.E., and Dumanski, J.P. (2008) Profiling of copy number variations (CNVs) in healthy individuals from three ethnic groups using a human genome 32 K BAC-clone-based array Hum Mutat 29, 398–408.CrossRefGoogle Scholar
  86. 86.
    Cann, H.M., de Toma, C., Cazes, L., Legrand, M.F., Morel, V., Piouffre, L., Bodmer, J., Bodmer, W.F., Bonne-Tamir, B., Cambon-Thomsen, A., Chen, Z., Chu, J., Carcassi, C., Contu, L., Du, R., Excoffier, L., Ferrara, G.B., Friedlaender, J.S., Groot, H., Gurwitz, D., Jenkins, T., Herrera, R.J., Huang, X., Kidd, J., Kidd, K.K., Langaney, A., Lin, A.A., Mehdi, S.Q., Parham, P., Piazza, A., Pistillo, M.P., Qian, Y., Shu, Q., Xu, J., Zhu, S., Weber, J.L., Greely, H.T., Feldman, M.W., Thomas, G., Dausset, J., and Cavalli-Sforza LL. (2002) A human genome diversity cell line panel Science 296, 261–2.Google Scholar
  87. 87.
    Itsara, A., Cooper, G.M., Baker, C., Girirajan, S., Li, J., Absher, D., Krauss, R.M., Myers, R.M., Ridker, P.M., Chasman, D.I., Mefford, H., Ying, P., Nickerson, D.A., and Eichler, E.E. (2009) Population analysis of large copy number variants and hotspots of human genetic disease Am J Hum Genet 84, 148–61.Google Scholar
  88. 88.
    McCarroll, S.A., Kuruvilla, F.G., Korn, J.M., Cawley, S., Nemesh, J., Wysoker, A., Shapero, M.H., de Bakker, P.I., Maller, J.B., Kirby, A., Elliott, A.L., Parkin, M., Hubbell, E., Webster, T., Mei, R., Veitch, J., Collins, P.J., Handsaker, R., Lincoln, S., Nizzari, M., Blume, J., Jones, K.W., Rava, R., Daly, M.J., Gabriel, S.B., and Altshuler, D. (2008) Integrated detection and population-genetic analysis of SNPs and copy number variation Nat Genet 40, 1166–74.Google Scholar
  89. 89.
    Kalinowski, S.T. (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs Conserv Genet 5, 539–43.Google Scholar
  90. 90.
    Schrider, D.R., and Hahn, M.W. (2010) Lower linkage disequilibrium at CNVs is due to both recurrent mutation and transposing duplications Mol Biol Evol 27, 103–11.Google Scholar
  91. 91.
    Branton, D., Deamer, D.W., Marziali, A., Bayley, H., Benner, S.A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., Jovanovich, S.B., Krstic, P.S., Lindsay, S., Ling, X.S., Mastrangelo, C.H., Meller, A., Oliver, J.S., Pershin, Y.V., Ramsey, J.M., Riehn, R., Soni, G.V., Tabard-Cossa, V., Wanunu, M., Wiggin, M., and Schloss, J.A. (2008) The potential and challenges of nanopore sequencing Nat Biotechnol 26, 1146–53.Google Scholar
  92. 92.
    Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., Bibillo, A., Bjornson, K., Chaudhuri, B., Christians, F., Cicero, R., Clark, S., Dalal, R., Dewinter, A., Dixon, J., Foquet, M., Gaertner, A., Hardenbol, P., Heiner, C., Hester, K., Holden, D., Kearns, G., Kong, X., Kuse, R., Lacroix, Y., Lin, S., Lundquist, P., Ma, C., Marks, P., Maxham, M., Murphy, D., Park, I., Pham, T., Phillips, M., Roy, J., Sebra, R., Shen, G., Sorenson, J., Tomaney, A., Travers, K., Trulson, M., Vieceli, J., Wegener, J., Wu, D., Yang, A., Zaccarin, D., Zhao, P., Zhong, F., Korlach, J., and Turner, S. (2009) Real-time DNA sequencing from single polymerase molecules Science 323, 133–8.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Evolutionary Biology, EBCUppsala UniversityUppsalaSweden
  2. 2.Department of Evolutionary Biology, Evolutionary Biology CenterUppsala UniversityUppsalaSweden

Personalised recommendations