What Have Studies of Genomic Disorders Taught Us About Our Genome?

  • Alexandra D. Simmons
  • Claudia M. B. Carvalho
  • James R. Lupski
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 838)

Abstract

The elucidation of genomic disorders began with molecular technologies that enabled detection of genomic changes which were (a) smaller than those resolved by traditional cytogenetics (less than 5 Mb) and (b) larger than what could be determined by conventional gel electrophoresis. Methods such as pulsed field gel electrophoresis (PFGE) and fluorescent in situ hybridization (FISH) could resolve such changes but were limited to locus-specific studies. The study of genomic disorders has rapidly advanced with the development of array-based techniques. These enabled examination of the entire human genome at a higher level of resolution, thus allowing elucidation of the basis of many new disorders, mechanisms that result in genomic changes that can result in copy number variation (CNV), and most importantly, a deeper understanding of the characteristics, features, and plasticity of our genome. In this chapter, we focus on the structural and architectural features of the genome, which can potentially result in genomic instability, delineate how mechanisms, such as NAHR, NHEJ, and FoSTeS/MMBIR lead to disease-causing rearrangements, and briefly describe the relationship between the leading methods presently used in studying genomic disorders. We end with a discussion on our new understanding about our genome including: the contribution of new mutation CNV to disease, the abundance of mosaicism, the extent of subtelomeric rearrangements, the frequency of de novo rearrangements associated with sporadic birth defects, the occurrence of balanced and unbalanced translocations, the increasing discovery of insertional translocations, the exploration of complex rearrangements and exonic CNVs. In the postgenomic era, our understanding of the genome has advanced very rapidly as the level of technical resolution has become higher. This leads to a greater understanding of the effects of rearrangements present both in healthy subjects and individuals with clinically relevant phenotypes.

Key words

Copy number variation Recombination Gene dosage Mosaicism Insertional translocation Comparative genomic hybridization 

References

  1. 1.
    Lupski, J. R. (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits, Trends Genet 14, 417–422.Google Scholar
  2. 2.
    Lupski, J. R. (2009) Genomic disorders ten years on, Genome Med 1, 42.Google Scholar
  3. 3.
    Nahon, J. L. (2003) Birth of ‘human-specific’ genes during primate evolution, Genetica 118, 193–208.Google Scholar
  4. 4.
    Bailey, J. A., and Eichler, E. E. (2006) Primate segmental duplications: crucibles of evolution, diversity and disease, Nat Rev Genet 7, 552–564.Google Scholar
  5. 5.
    Stankiewicz, P., Shaw, C. J., Withers, M., Inoue, K., and Lupski, J. R. (2004) Serial segmental duplications during primate evolution result in complex human genome architecture, Genome Res 14, 2209–2220.Google Scholar
  6. 6.
    Fortna, A., Kim, Y., MacLaren, E., et al. (2004) Lineage-specific gene duplication and loss in human and great ape evolution, PLoS Biol 2, E207.Google Scholar
  7. 7.
    Dumas, L., Kim, Y. H., Karimpour-Fard, A., et al. (2007) Gene copy number variation spanning 60 million years of human and primate evolution, Genome Res 17, 1266–1277.Google Scholar
  8. 8.
    Lupski, J. R., de Oca-Luna, R. M., Slaugenhaupt, S., et al. (1991) DNA duplication associated with Charcot-Marie-Tooth disease type 1A, Cell 66, 219–232.Google Scholar
  9. 9.
    Lupski, J. R., and Stankiewicz, P. (2005) Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes, PLoS Genet 1, e49.Google Scholar
  10. 10.
    Iafrate, A. J., Feuk, L., Rivera, M. N., et al. (2004) Detection of large-scale variation in the human genome, Nat Genet 36, 949–951.Google Scholar
  11. 11.
    Korbel, J. O., Urban, A. E., Affourtit, J. P., et al. (2007) Paired-end mapping reveals extensive structural variation in the human genome, Science 318, 420–426.Google Scholar
  12. 12.
    Sebat, J., Lakshmi, B., Troge, J., et al. (2004) Large-scale copy number polymorphism in the human genome, Science 305, 525–528.Google Scholar
  13. 13.
    Redon, R., Ishikawa, S., Fitch, K. R., et al. (2006) Global variation in copy number in the human genome, Nature 444, 444–454.Google Scholar
  14. 14.
    Wong, K. K., deLeeuw, R. J., Dosanjh, N. S., et al. (2007) A comprehensive analysis of common copy-number variations in the human genome, Am J Hum Genet 80, 91–104.Google Scholar
  15. 15.
    Khaja, R., Zhang, J., MacDonald, J. R., et al. (2006) Genome assembly comparison identifies structural variants in the human genome, Nat Genet 38, 1413–1418.Google Scholar
  16. 16.
    Newman, T. L., Tuzun, E., Morrison, V. A., et al. (2005) A genome-wide survey of structural variation between human and chimpanzee, Genome Res 15, 1344–1356.Google Scholar
  17. 17.
    Fiegler, H., Redon, R., Andrews, D., et al. (2006) Accurate and reliable high-throughput detection of copy number variation in the human genome, Genome Res 16, 1566–1574.Google Scholar
  18. 18.
    Komura, D., Shen, F., Ishikawa, S., et al. (2006) Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays, Genome Res 16, 1575–1584.Google Scholar
  19. 19.
    Lupski, J. R. (2007) Structural variation in the human genome, N Engl J Med 356, 1169–1171.Google Scholar
  20. 20.
    Tuzun, E., Sharp, A. J., Bailey, J. A., et al. (2005) Fine-scale structural variation of the human genome, Nat Genet 37, 727–732.Google Scholar
  21. 21.
    Turner, D. J., Miretti, M., Rajan, D., et al. (2008) Germline rates of de novo meiotic deletions and duplications causing several genomic disorders, Nat Genet 40, 90–95.Google Scholar
  22. 22.
    Bruder, C. E., Piotrowski, A., Gijsbers, A. A., et al. (2008) Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles, Am J Hum Genet 82, 763–771.Google Scholar
  23. 23.
    Liang, Q., Conte, N., Skarnes, W. C., and Bradley, A. (2008) Extensive genomic copy number variation in embryonic stem cells, Proc Natl Acad Sci USA 105, 17453–17456.Google Scholar
  24. 24.
    Flores, M., Morales, L., Gonzaga-Jauregui, C., et al. (2007) Recurrent DNA inversion rearrangements in the human genome, Proc Natl Acad Sci USA 104, 6099–6106.Google Scholar
  25. 25.
    Hastings, P. J., Lupski, J. R., Rosenberg, S. M., and Ira, G. (2009) Mechanisms of change in gene copy number, Nat Rev Genet 10, 551–564.Google Scholar
  26. 26.
    Britten, R. J., and Kohne, D. E. (1968) Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms, Science 161, 529–540.Google Scholar
  27. 27.
    Lander, E. S., Linton, L. M., Birren, B., et al. (2001) Initial sequencing and analysis of the human genome, Nature 409, 860–921.Google Scholar
  28. 28.
    Edelmann, L., Pandita, R. K., and Morrow, B. E. (1999) Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome, Am J Hum Genet 64, 1076–1086.Google Scholar
  29. 29.
    Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J., and Eichler, E. E. (2001) Segmental duplications: organization and impact within the current human genome project assembly, Genome Res 11, 1005–1017.Google Scholar
  30. 30.
    Stankiewicz, P., and Lupski, J. R. (2002) Genome architecture, rearrangements and genomic disorders, Trends Genet 18, 74–82.Google Scholar
  31. 31.
    Bacolla, A., and Wells, R. D. (2004) Non-B DNA conformations, genomic rearrangements, and human disease, J Biol Chem 279, 47411–47414.Google Scholar
  32. 32.
    Bacolla, A., Jaworski, A., Larson, J. E., et al. (2004) Breakpoints of gross deletions coincide with non-B DNA conformations, Proc Natl Acad Sci USA 101, 14162–14167.Google Scholar
  33. 33.
    Bacolla, A., Wojciechowska, M., Kosmider, B., Larson, J. E., and Wells, R. D. (2006) The involvement of non-B DNA structures in gross chromosomal rearrangements, DNA Repair (Amst) 5, 1161–1170.Google Scholar
  34. 34.
    Yu, X., and Gabriel, A. (2004) Reciprocal translocations in Saccharomyces cerevisiae formed by nonhomologous end joining, Genetics 166, 741–751.Google Scholar
  35. 35.
    Elliott, B., Richardson, C., and Jasin, M. (2005) Chromosomal translocation mechanisms at intronic Alu elements in mammalian cells, Mol Cell 17, 885–894.Google Scholar
  36. 36.
    Oza, P., Jaspersen, S. L., Miele, A., Dekker, J., and Peterson, C. L. (2009) Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery, Genes Dev 23, 912–927.Google Scholar
  37. 37.
    Shao, L., Shaw, C. A., Lu, X. Y., et al. (2008) Identification of chromosome abnormalities in subtelomeric regions by microarray analysis: a study of 5,380 cases, Am J Med Genet A 146A, 2242–2251.Google Scholar
  38. 38.
    Yatsenko, S. A., Brundage, E. K., Roney, E. K., Cheung, S. W., Chinault, A. C., and Lupski, J. R. (2009) Molecular mechanisms for subtelomeric rearrangements associated with the 9q34.3 microdeletion syndrome, Hum Mol Genet 18, 1924–1936.Google Scholar
  39. 39.
    Zhang, L., Lu, H. H., Chung, W. Y., Yang, J., and Li, W. H. (2005) Patterns of segmental duplication in the human genome, Mol Biol Evol 22, 135–141.Google Scholar
  40. 40.
    She, X., Horvath, J. E., Jiang, Z., et al. (2004) The structure and evolution of centromeric transition regions within the human genome, Nature 430, 857–864.Google Scholar
  41. 41.
    Nguyen, D. Q., Webber, C., and Ponting, C. P. (2006) Bias of selection on human copy-number variants, PLoS Genet 2, e20.Google Scholar
  42. 42.
    Payen, C., Koszul, R., Dujon, B., and Fischer, G. (2008) Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms, PLoS Genet 4, e1000175.Google Scholar
  43. 43.
    Nobile, C., Toffolatti, L., Rizzi, F., et al. (2002) Analysis of 22 deletion breakpoints in dystrophin intron 49, Hum Genet 110, 418–421.Google Scholar
  44. 44.
    Visser, R., Shimokawa, O., Harada, N., et al. (2005) Identification of a 3.0-kb major recombination hotspot in patients with Sotos syndrome who carry a common 1.9-Mb microdeletion, Am J Hum Genet 76, 52–67.Google Scholar
  45. 45.
    de Smith, A. J., Walters, R. G., Coin, L. J., et al. (2008) Small deletion variants have stable breakpoints commonly associated with alu elements, PLoS One 3, e3104.Google Scholar
  46. 46.
    Liskay, R. M., Letsou, A., and Stachelek, J. L. (1987) Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells, Genetics 115, 161–167.Google Scholar
  47. 47.
    Reiter, L. T., Hastings, P. J., Nelis, E., De Jonghe, P., Van Broeckhoven, C., and Lupski, J. R. (1998) Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients, Am J Hum Genet 62, 1023–1033.Google Scholar
  48. 48.
    Pentao, L., Wise, C. A., Chinault, A. C., Patel, P. I., and Lupski, J. R. (1992) Charcot-Marie-Tooth type 1A duplication appears to arise from recombination at repeat sequences flanking the 1.5 Mb monomer unit, Nat Genet 2, 292–300.Google Scholar
  49. 49.
    Lam, K. W., and Jeffreys, A. J. (2006) Processes of copy-number change in human DNA: the dynamics of {alpha}-globin gene deletion, Proc Natl Acad Sci USA 103, 8921–8927.Google Scholar
  50. 50.
    Lam, K. W., and Jeffreys, A. J. (2007) Processes of de novo duplication of human alpha-globin genes, Proc Natl Acad Sci USA 104, 10950–10955.Google Scholar
  51. 51.
    Shaw, C. J., and Lupski, J. R. (2005) Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms, Hum Genet 116, 1–7.Google Scholar
  52. 52.
    Kidd, J. M., Cooper, G. M., Donahue, W. F., et al. (2008) Mapping and sequencing of structural variation from eight human genomes, Nature 453, 56–64.Google Scholar
  53. 53.
    Gu, W., Zhang, F., and Lupski, J. R. (2008) Mechanisms for human genomic rearrangements, Pathogenetics 1, 4.Google Scholar
  54. 54.
    Barbouti, A., Stankiewicz, P., Nusbaum, C., et al. (2004) The breakpoint region of the most common isochromosome, i(17q), in human neoplasia is characterized by a complex genomic architecture with large, palindromic, low-copy repeats, Am J Hum Genet 74, 1–10.Google Scholar
  55. 55.
    Carvalho, C. M., and Lupski, J. R. (2008) Copy number variation at the breakpoint region of isochromosome 17q, Genome Res 18, 1724–1732.Google Scholar
  56. 56.
    Mendrzyk, F., Korshunov, A., Toedt, G., et al. (2006) Isochromosome breakpoints on 17p in medulloblastoma are flanked by different classes of DNA sequence repeats, Genes Chromosomes Cancer 45, 401–410.Google Scholar
  57. 57.
    Kehrer-Sawatzki, H., Schmid, E., Funsterer, C., Kluwe, L., and Mautner, V. F. (2008) Absence of cutaneous neurofibromas in an NF1 patient with an atypical deletion partially overlapping the common 1.4 Mb microdeleted region, Am J Med Genet A 146A, 691–699.Google Scholar
  58. 58.
    Zhang, F., Potocki, L., Sampson, J. B., et al. (2010) Identification of uncommon recurrent Potocki-Lupski syndrome-associated duplications and the distribution of rearrangement types and mechanisms in PTLS, Am J Hum Genet 86, 462–470.Google Scholar
  59. 59.
    Krangel, M. S., Hernandez-Munain, C., Lauzurica, P., McMurry, M., Roberts, J. L., and Zhong, X. P. (1998) Developmental regulation of V(D)J recombination at the TCR alpha/delta locus, Immunol Rev 165, 131–147.Google Scholar
  60. 60.
    Burma, S., Chen, B. P., and Chen, D. J. (2006) Role of non-homologous end joining (NHEJ) in maintaining genomic integrity, DNA Repair (Amst) 5, 1042–1048.Google Scholar
  61. 61.
    Weterings, E., and van Gent, D. C. (2004) The mechanism of non-homologous end-joining: a synopsis of synapsis, DNA Repair (Amst) 3, 1425–1435.Google Scholar
  62. 62.
    Lieber, M. R. (2008) The mechanism of human nonhomologous DNA end joining, J Biol Chem 283, 1–5.Google Scholar
  63. 63.
    Daley, J. M., Palmbos, P. L., Wu, D., and Wilson, T. E. (2005) Nonhomologous end joining in yeast, Annu Rev Genet 39, 431–451.Google Scholar
  64. 64.
    Haviv-Chesner, A., Kobayashi, Y., Gabriel, A., and Kupiec, M. (2007) Capture of linear fragments at a double-strand break in yeast, Nucleic Acids Res 35, 5192–5202.Google Scholar
  65. 65.
    Yu, X., and Gabriel, A. (2003) Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae, Genetics 163, 843–856.Google Scholar
  66. 66.
    Lee, J. A., Inoue, K., Cheung, S. W., Shaw, C. A., Stankiewicz, P., and Lupski, J. R. (2006) Role of genomic architecture in PLP1 duplication causing Pelizaeus-Merzbacher disease, Hum Mol Genet 15, 2250–2265.Google Scholar
  67. 67.
    Michel, B., Ehrlich, S. D., and Uzest, M. (1997) DNA double-strand breaks caused by replication arrest, EMBO J 16, 430–438.Google Scholar
  68. 68.
    Arlt, M. F., Mulle, J. G., Schaibley, V. M., et al. (2009) Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants, Am J Hum Genet 84, 339–350.Google Scholar
  69. 69.
    Cabrejo, L., Guyant-Marechal, L., Laquerriere, A., et al. (2006) Phenotype associated with APP duplication in five families, Brain 129, 2966–2976.Google Scholar
  70. 70.
    Chartier-Harlin, M. C., Kachergus, J., Roumier, C., et al. (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease, Lancet 364, 1167–1169.Google Scholar
  71. 71.
    del Gaudio, D., Fang, P., Scaglia, F., et al. (2006) Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males, Genet Med 8, 784–792.Google Scholar
  72. 72.
    Farrer, M., Kachergus, J., Forno, L., et al. (2004) Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications, Ann Neurol 55, 174–179.Google Scholar
  73. 73.
    Ibanez, P., Bonnet, A. M., Debarges, B., et al. (2004) Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease, Lancet 364, 1169–1171.Google Scholar
  74. 74.
    Meins, M., Lehmann, J., Gerresheim, F., et al. (2005) Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome, J Med Genet 42, e12.Google Scholar
  75. 75.
    Nishioka, K., Hayashi, S., Farrer, M. J., et al. (2006) Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease, Ann Neurol 59, 298–309.Google Scholar
  76. 76.
    Polymeropoulos, M. H., Lavedan, C., Leroy, E., et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease, Science 276, 2045–2047.Google Scholar
  77. 77.
    Potocki, L., Bi, W., Treadwell-Deering, D., et al. (2007) Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype, Am J Hum Genet 80, 633–649.Google Scholar
  78. 78.
    Rovelet-Lecrux, A., Hannequin, D., Raux, G., et al. (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy, Nat Genet 38, 24–26.Google Scholar
  79. 79.
    Singleton, A. B., Farrer, M., Johnson, J., et al. (2003) Alpha-Synuclein locus triplication causes Parkinson’s disease, Science 302, 841.Google Scholar
  80. 80.
    Van Esch, H., Bauters, M., Ignatius, J., et al. (2005) Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males, Am J Hum Genet 77, 442–453.Google Scholar
  81. 81.
    Vissers, L. E., Stankiewicz, P., Yatsenko, S. A., et al. (2007) Complex chromosome 17p rearrangements associated with low-copy repeats in two patients with congenital anomalies, Hum Genet 121, 697–709.Google Scholar
  82. 82.
    Zhang, F., Seeman, P., Pengfei, L., et al. (2010) Mechanisms for nonrecurrent genomic rearrangements associated with CMT1A or HNPP: rare CNVs as a cause for missing heritability, Am J Hum Genet 86, 892–903.Google Scholar
  83. 83.
    Lee, J. A., Carvalho, C. M., and Lupski, J. R. (2007) A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders, Cell 131, 1235–1247.Google Scholar
  84. 84.
    Hastings, P. J., Ira, G., and Lupski, J. R. (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation, PLoS Genet 5, e1000327.Google Scholar
  85. 85.
    Hastings, P. J., Bull, H. J., Klump, J. R., and Rosenberg, S. M. (2000) Adaptive amplification: an inducible chromosomal instability mechanism, Cell 103, 723–731.Google Scholar
  86. 86.
    Hastings, P. J., Slack, A., Petrosino, J. F., and Rosenberg, S. M. (2004) Adaptive amplification and point mutation are independent mechanisms: evidence for various stress-inducible mutation mechanisms, PLoS Biol 2, e399.Google Scholar
  87. 87.
    Slack, A., Thornton, P. C., Magner, D. B., Rosenberg, S. M., and Hastings, P. J. (2006) On the mechanism of gene amplification induced under stress in Escherichia coli, PLoS Genet 2, e48.Google Scholar
  88. 88.
    Ponder, R. G., Fonville, N. C., and Rosenberg, S. M. (2005) A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation, Mol Cell 19, 791–804.Google Scholar
  89. 89.
    Merrihew, R. V., Marburger, K., Pennington, S. L., Roth, D. B., and Wilson, J. H. (1996) High-frequency illegitimate integration of transfected DNA at preintegrated target sites in a mammalian genome, Mol Cell Biol 16, 10–18.Google Scholar
  90. 90.
    Borg, I., Delhanty, J. D., and Baraitser, M. (1995) Detection of hemizygosity at the elastin locus by FISH analysis as a diagnostic test in both classical and atypical cases of Williams syndrome, J Med Genet 32, 692–696.Google Scholar
  91. 91.
    Yatsenko, S. A., Shaw, C. A., Ou, Z., et al. (2009) Microarray-based comparative genomic hybridization using sex-matched reference DNA provides greater sensitivity for detection of sex chromosome imbalances than array-comparative genomic hybridization with sex-mismatched reference DNA, J Mol Diagn 11, 226–237.Google Scholar
  92. 92.
    Beaudet, A. L., and Belmont, J. W. (2008) Array-based DNA diagnostics: let the revolution begin, Annu Rev Med 59, 113–129.Google Scholar
  93. 93.
    Stankiewicz, P., and Beaudet, A. L. (2007) Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation, Curr Opin Genet Dev 17, 182–192.Google Scholar
  94. 94.
    Alkan, C., Kidd, J. M., Marques-Bonet, T., et al. (2009) Personalized copy number and segmental duplication maps using next-generation sequencing, Nat Genet 41, 1061–1067.Google Scholar
  95. 95.
    Cheung, S. W., Shaw, C. A., Scott, D. A., et al. (2007) Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics, Am J Med Genet A 143A, 1679–1686.Google Scholar
  96. 96.
    Ballif, B. C., Rorem, E. A., Sundin, K., et al. (2006) Detection of low-level mosaicism by array CGH in routine diagnostic specimens, Am J Med Genet A 140, 2757–2767.Google Scholar
  97. 97.
    Lu, X. Y., Phung, M. T., Shaw, C. A., et al. (2008) Genomic imbalances in neonates with birth defects: high detection rates by using chromosomal microarray analysis, Pediatrics 122, 1310–1318.Google Scholar
  98. 98.
    Scott, S. A., Cohen, N., Brandt, T., Toruner, G., Desnick, R. J., and Edelmann, L. (2010) Detection of low-level mosaicism and placental mosaicism by oligonucleotide array comparative genomic hybridization, Genet Med 12, 85–92.Google Scholar
  99. 99.
    Piotrowski, A., Bruder, C. E., Andersson, R., et al. (2008) Somatic mosaicism for copy number variation in differentiated human tissues, Hum Mutat 29, 1118–1124.Google Scholar
  100. 100.
    Linardopoulou, E. V., Williams, E. M., Fan, Y., Friedman, C., Young, J. M., and Trask, B. J. (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication, Nature 437, 94–100.Google Scholar
  101. 101.
    Riethman, H., Ambrosini, A., and Paul, S. (2005) Human subtelomere structure and variation, Chromosome Res 13, 505–515.Google Scholar
  102. 102.
    Cheung, S. W., Shaw, C. A., Yu, W., et al. (2005) Development and validation of a CGH microarray for clinical cytogenetic diagnosis, Genet Med 7, 422–432.Google Scholar
  103. 103.
    Ravnan, J. B., Tepperberg, J. H., Papenhausen, P., et al. (2006) Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities, J Med Genet 43, 478–489.Google Scholar
  104. 104.
    Ballif, B. C., Sulpizio, S. G., Lloyd, R. M., et al. (2007) The clinical utility of enhanced subtelomeric coverage in array CGH, Am J Med Genet A 143A, 1850–1857.Google Scholar
  105. 105.
    Rickman, L., Fiegler, H., Shaw-Smith, C., et al. (2006) Prenatal detection of unbalanced chromosomal rearrangements by array CGH, J Med Genet 43, 353–361.Google Scholar
  106. 106.
    Bi, W., Breman, A. M., Venable, S. F., et al. (2008) Rapid prenatal diagnosis using uncultured amniocytes and oligonucleotide array CGH, Prenat Diagn 28, 943–949.Google Scholar
  107. 107.
    Simovich, M. J., Yatsenko, S. A., Kang, S. H., et al. (2007) Prenatal diagnosis of a 9q34.3 microdeletion by array-CGH in a fetus with an apparently balanced translocation, Prenat Diagn 27, 1112–1117.Google Scholar
  108. 108.
    Van den Veyver, I. B., Patel, A., Shaw, C. A., et al. (2009) Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases, Prenat Diagn 29, 29–39.Google Scholar
  109. 109.
    Lupski, J. R. (2007) Genomic rearrangements and sporadic disease, Nat Genet 39, S43-47.Google Scholar
  110. 110.
    Jacobs, P. A., Browne, C., Gregson, N., Joyce, C., and White, H. (1992) Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding, J Med Genet 29, 103–108.Google Scholar
  111. 111.
    Shah, V. C., Murthy, D. S., and Murthy, S. K. (1990) Cytogenetic studies in a population suspected to have chromosomal abnormalities, Indian J Pediatr 57, 235–243.Google Scholar
  112. 112.
    Kenue, R. K., Raj, A. K., Harris, P. F., and el-Bualy, M. S. (1995) Cytogenetic analysis of children suspected of chromosomal abnormalities, J Trop Pediatr 41, 77–80.Google Scholar
  113. 113.
    Goud, M. T., Al-Harassi, S. M., Al-Khalili, S. A., Al-Salmani, K. K., Al-Busaidy, S. M., and Rajab, A. (2005) Incidence of chromosome abnormalities in the Sultanate of Oman, Saudi Med J 26, 1951–1957.Google Scholar
  114. 114.
    Kim, S. S., Jung, S. C., Kim, H. J., Moon, H. R., and Lee, J. S. (1999) Chromosome abnormalities in a referred population for suspected chromosomal aberrations: a report of 4117 cases, J Korean Med Sci 14, 373–376.Google Scholar
  115. 115.
    Warburton, D. (1991) De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints, Am J Hum Genet 49, 995–1013.Google Scholar
  116. 116.
    Sahoo, T., Cheung, S. W., Ward, P., et al. (2006) Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization, Genet Med 8, 719–727.Google Scholar
  117. 117.
    Gribble, S. M., Prigmore, E., Burford, D. C., et al. (2005) The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes, J Med Genet 42, 8–16.Google Scholar
  118. 118.
    Baptista, J., Mercer, C., Prigmore, E., et al. (2008) Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort, Am J Hum Genet 82, 927–936.Google Scholar
  119. 119.
    Zackai, E. H., and Emanuel, B. S. (1980) Site-specific reciprocal translocation, t(11;22) (q23;q11), in several unrelated families with 3:1 meiotic disjunction, Am J Med Genet 7, 507–521.Google Scholar
  120. 120.
    Shaikh, T. H., Budarf, M. L., Celle, L., Zackai, E. H., and Emanuel, B. S. (1999) Clustered 11q23 and 22q11 breakpoints and 3:1 meiotic malsegregation in multiple unrelated t(11;22) families, Am J Hum Genet 65, 1595–1607.Google Scholar
  121. 121.
    Kurahashi, H., and Emanuel, B. S. (2001) Long AT-rich palindromes and the constitutional t(11;22) breakpoint, Hum Mol Genet 10, 2605–2617.Google Scholar
  122. 122.
    Edelmann, L., Spiteri, E., Koren, K., et al. (2001) AT-rich palindromes mediate the constitutional t(11;22) translocation, Am J Hum Genet 68, 1–13.Google Scholar
  123. 123.
    Ashley, T., Gaeth, A. P., Inagaki, H., et al. (2006) Meiotic recombination and spatial proximity in the etiology of the recurrent t(11;22), Am J Hum Genet 79, 524–538.Google Scholar
  124. 124.
    Kato, T., Inagaki, H., Yamada, K., et al. (2006) Genetic variation affects de novo translocation frequency, Science 311, 971.Google Scholar
  125. 125.
    Giglio, S., Calvari, V., Gregato, G., et al. (2002) Heterozygous submicroscopic inversions involving olfactory receptor-gene clusters mediate the recurrent t(4;8)(p16;p23) translocation, Am J Hum Genet 71, 276–285.Google Scholar
  126. 126.
    Maas, N. M., Van Vooren, S., Hannes, F., et al. (2007) The t(4;8) is mediated by homologous recombination between olfactory receptor gene clusters, but other 4p16 translocations occur at random, Genet Couns 18, 357–365.Google Scholar
  127. 127.
    Ou, Z., Stankiewicz, P., Xia, Z., et al. (2011) Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes. Genome Res 21, 33–46.Google Scholar
  128. 128.
    Kang, S. H., Shaw, C., Ou, Z., et al. (2010) Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results, Am J Med Genet A 152A, 1111–1126.Google Scholar
  129. 129.
    Fryns, J. P., Kleczkowska, A., and Kenis, H. (1984) De novo complex chromosomal rearrangement (CCR) in a severely mentally retarded boy, Ann Genet 27, 62–64.Google Scholar
  130. 130.
    Van Hemel, J. O., and Eussen, H. J. (2000) Interchromosomal insertions. Identification of five cases and a review, Hum Genet 107, 415–432.Google Scholar
  131. 131.
    Zhang, F., Carvalho, C. M., and Lupski, J. R. (2009) Complex human chromosomal and genomic rearrangements, Trends Genet 25, 298–307.Google Scholar
  132. 132.
    Woodward, K. J., Cundall, M., Sperle, K., et al. (2005) Heterogeneous duplications in patients with Pelizaeus-Merzbacher disease suggest a mechanism of coupled homologous and nonhomologous recombination, Am J Hum Genet 77, 966–987.Google Scholar
  133. 133.
    Bi, W., Sapir, T., Shchelochkov, O. A., et al. (2009) Increased LIS1 expression affects human and mouse brain development, Nat Genet 41, 168–177.Google Scholar
  134. 134.
    Carvalho, C. M., Zhang, F., Liu, P., et al. (2009) Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching, Hum Mol Genet 18, 2188–2203.Google Scholar
  135. 135.
    Small, K., Iber, J., and Warren, S. T. (1997) Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats, Nat Genet 16, 96–99.Google Scholar
  136. 136.
    Zhang, F., Khajavi, M., Connolly, A. M., Towne, C. F., Batish, S. D., and Lupski, J. R. (2009) The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans, Nat Genet 41, 849–853.Google Scholar
  137. 137.
    Boone, P. M., Bacino, C. A., Shaw, C. A., et al. Detection of clinically relevant exonic copy-number changes by array CGH, Hum Mutat 31, 1326–1342.Google Scholar
  138. 138.
    Conrad, D. F., Pinto, D., Redon, R., et al. (2009) Origins and functional impact of copy number variation in the human genome, Nature 464, 704–712.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alexandra D. Simmons
    • 1
  • Claudia M. B. Carvalho
    • 2
  • James R. Lupski
    • 2
    • 3
    • 4
  1. 1.Biology DepartmentUniversity of St ThomasHoustonUSA
  2. 2.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  3. 3.Department of PediatricsBaylor College of MedicineHoustonUSA
  4. 4.Texas Children’s HospitalHoustonUSA

Personalised recommendations