Skip to main content

Mitochondrial DNA Mutations: An Overview of Clinical and Molecular Aspects

  • Protocol
  • First Online:
Mitochondrial Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 837))

Abstract

Mutations that arise in mitochondrial DNA (mtDNA) may be sporadic, maternally inherited, or Mendelian in character and include mtDNA rearrangements such as deletions, inversions or duplications, point mutations, or copy number depletion. Primary mtDNA mutations occur sporadically or exhibit maternal inheritance and arise due in large part to the high mutation rate of mtDNA. mtDNA mutations may also occur because of defects in the biogenesis or maintenance of mtDNA, reflecting the contribution of nuclear-encoded genes to these processes, and in this case exhibit Mendelian inheritance. Whether maternally inherited, sporadic, or Mendelian, mtDNA mutations can exhibit a complex and broad spectrum of disease manifestations due to the central role mitochondria play in a variety of cellular functions. In addition, because there exist hundreds to thousands of copies of mtDNA in each cell, the proportion of mutant mtDNA molecules can have a profound effect on the cellular and clinical phenotype. This chapter reviews the classification of mtDNA mutations and the clinical features that determine the diagnosis of a primary mtDNA disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Z., and Butow, R. A. (2006) Mitochondrial retrograde signaling, Annu Rev Genet 40, 159–185.

    Article  PubMed  CAS  Google Scholar 

  2. Brookes, P. S., Yoon, Y., Robotham, J. L., et al. (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle, Am J Physiol Cell Physiol 287, C817–833.

    CAS  Google Scholar 

  3. Acin-Perez, R., Salazar, E., Kamenetsky, M., et al. (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation, Cell Metab 9, 265–276.

    Article  PubMed  CAS  Google Scholar 

  4. Acin-Perez, R., Hoyos, B., Gong, J., et al. (2010) Regulation of intermediary metabolism by the PKCdelta signalosome in mitochondria, FASEB J 24, 5033–5042.

    Article  PubMed  CAS  Google Scholar 

  5. Yao, Z., and Seger, R. (2009) The ERK signaling cascade--views from different subcellular compartments, Biofactors 35, 407–416.

    Article  PubMed  CAS  Google Scholar 

  6. Shaw, P. E. (2010) Could STAT3 provide a link between respiration and cell cycle progression?, Cell Cycle 9, 4294–4296.

    Article  PubMed  CAS  Google Scholar 

  7. Mookherjee, P., Quintanilla, R., Roh, M. S., et al. (2007) Mitochondrial-targeted active Akt protects SH-SY5Y neuroblastoma cells from staurosporine-induced apoptotic cell death, J Cell Biochem 102, 196–210.

    Article  PubMed  CAS  Google Scholar 

  8. Reeve, A. K., Krishnan, K. J., and Turnbull, D. (2008) Mitochondrial DNA mutations in disease, aging, and neurodegeneration, Ann N Y Acad Sci 1147, 21–29.

    Article  PubMed  CAS  Google Scholar 

  9. Smits, P., Smeitink, J., and van den Heuvel, L. (2010) Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies, J Biomed Biotechnol 2010, 737385.

    Article  PubMed  Google Scholar 

  10. Zeviani, M., and Di Donato, S. (2004) Mitochondrial disorders, Brain 127, 2153–2172.

    Article  PubMed  Google Scholar 

  11. Schatz, G. (1963) The Isolation of Possible Mitochondrial Precursor Structures from Aerobically Grown Baker’s Yeast, Biochem Biophys Res Commun 12, 448–451.

    Article  PubMed  CAS  Google Scholar 

  12. Nass, M. M., and Nass, S. (1963) Intramitochondrial Fibers with DNA Characteristics. I. Fixation and Electron Staining Reactions, J Cell Biol 19, 593–611.

    Article  PubMed  CAS  Google Scholar 

  13. Holt, I. J., Harding, A. E., and Morgan-Hughes, J. A. (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies, Nature 331, 717–719.

    Article  PubMed  CAS  Google Scholar 

  14. Zeviani, M., Moraes, C. T., DiMauro, S., et al. (1988) Deletions of mitochondrial DNA in Kearns-Sayre syndrome, Neurology 38, 1339–1346.

    PubMed  CAS  Google Scholar 

  15. Lestienne, P., and Ponsot, G. (1988) Kearns-Sayre syndrome with muscle mitochondrial DNA deletion, Lancet 1, 885.

    Article  PubMed  CAS  Google Scholar 

  16. Wallace, D. C., Singh, G., Lott, M. T., et al. (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy, Science 242, 1427–1430.

    Article  PubMed  CAS  Google Scholar 

  17. Shoffner, J. M., Lott, M. T., Lezza, A. M., et al. (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation, Cell 61, 931–937.

    Article  PubMed  CAS  Google Scholar 

  18. Goto, Y., Nonaka, I., and Horai, S. (1990) A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies, Nature 348, 651–653.

    Article  PubMed  CAS  Google Scholar 

  19. Prezant, T. R., Agapian, J. V., Bohlman, M. C., et al. (1993) Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness, Nat Genet 4, 289–294.

    Article  PubMed  CAS  Google Scholar 

  20. Brown, W. M., Prager, E. M., Wang, A., et al. (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution, J Mol Evol 18, 225–239.

    Article  PubMed  CAS  Google Scholar 

  21. Parson, W., and Bandelt, H. J. (2007) Extended guidelines for mtDNA typing of population data in forensic science, Forensic Sci Int Genet 1, 13–19.

    Article  PubMed  CAS  Google Scholar 

  22. Ghelli, A., Porcelli, A. M., Zanna, C., et al. (2009) The background of mitochondrial DNA haplogroup J increases the sensitivity of Leber’s hereditary optic neuropathy cells to 2,5-hexanedione toxicity, PLoS One 4, e7922.

    Article  PubMed  Google Scholar 

  23. Gomez-Duran, A., Pacheu-Grau, D., Lopez-Gallardo, E., et al. (2010) Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups, Hum Mol Genet 19, 3343–3353.

    Article  PubMed  CAS  Google Scholar 

  24. Thorburn, D. R. (2004) Mitochondrial disorders: prevalence, myths and advances, J Inherit Metab Dis 27, 349–362.

    Article  PubMed  CAS  Google Scholar 

  25. Skladal, D., Halliday, J., and Thorburn, D. R. (2003) Minimum birth prevalence of mitochondrial respiratory chain disorders in children, Brain 126, 1905–1912.

    Article  PubMed  Google Scholar 

  26. Diogo, L., Grazina, M., Garcia, P., et al. (2009) Pediatric mitochondrial respiratory chain disorders in the Centro region of Portugal, Pediatr Neurol 40, 351–356.

    Article  PubMed  Google Scholar 

  27. Chinnery, P. F., Johnson, M. A., Wardell, T. M., et al. (2000) The epidemiology of pathogenic mitochondrial DNA mutations, Ann Neurol 48, 188–193.

    Article  PubMed  CAS  Google Scholar 

  28. Schaefer, A. M., McFarland, R., Blakely, E. L., et al. (2008) Prevalence of mitochondrial DNA disease in adults, Ann Neurol 63, 35–39.

    Article  PubMed  CAS  Google Scholar 

  29. Elliott, H. R., Samuels, D. C., Eden, J. A., et al. (2008) Pathogenic mitochondrial DNA mutations are common in the general population, Am J Hum Genet 83, 254–260.

    Article  PubMed  CAS  Google Scholar 

  30. Schwartz, M., and Vissing, J. (2002) Paternal inheritance of mitochondrial DNA, N Engl J Med 347, 576–580.

    Article  PubMed  Google Scholar 

  31. Kraytsberg, Y., Schwartz, M., Brown, T. A., et al. (2004) Recombination of human mitochondrial DNA, Science 304, 981.

    Article  PubMed  CAS  Google Scholar 

  32. Cree, L. M., Samuels, D. C., de Sousa Lopes, S. C., et al. (2008) A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes, Nat Genet 40, 249–254.

    Article  PubMed  CAS  Google Scholar 

  33. Wai, T., Teoli, D., and Shoubridge, E. A. (2008) The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes, Nat Genet 40, 1484–1488.

    Article  PubMed  CAS  Google Scholar 

  34. Cao, L., Shitara, H., Sugimoto, M., et al. (2009) New evidence confirms that the mitochondrial bottleneck is generated without reduction of mitochondrial DNA content in early primordial germ cells of mice, PLoS Genet 5, e1000756.

    Article  PubMed  Google Scholar 

  35. Battersby, B. J., Loredo-Osti, J. C., and Shoubridge, E. A. (2003) Nuclear genetic control of mitochondrial DNA segregation, Nat Genet 33, 183–186.

    Article  PubMed  CAS  Google Scholar 

  36. Jenuth, J. P., Peterson, A. C., and Shoubridge, E. A. (1997) Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice, Nat Genet 16, 93–95.

    Article  PubMed  CAS  Google Scholar 

  37. Jokinen, R., Marttinen, P., Sandell, H. K., et al. (2010) Gimap3 regulates tissue-specific mitochondrial DNA segregation, PLoS Genet 6, e1001161.

    Article  PubMed  Google Scholar 

  38. Pearson, H. A., Lobel, J. S., Kocoshis, S. A., et al. (1979) A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction, J Pediatr 95, 976–984.

    Article  PubMed  CAS  Google Scholar 

  39. Hammans, S. R. (1994) Mitochondrial DNA and disease, Essays Biochem 28, 99–112.

    PubMed  CAS  Google Scholar 

  40. Schroder, R., Vielhaber, S., Wiedemann, F. R., et al. (2000) New insights into the metabolic consequences of large-scale mtDNA deletions: a quantitative analysis of biochemical, morphological, and genetic findings in human skeletal muscle, J Neuropathol Exp Neurol 59, 353–360.

    PubMed  CAS  Google Scholar 

  41. Wong, L. J. (2001) Recognition of mitochondrial DNA deletion syndrome with non-neuromuscular multisystemic manifestation, Genet Med 3, 399–404.

    Article  PubMed  CAS  Google Scholar 

  42. Samuels, D. C., Schon, E. A., and Chinnery, P. F. (2004) Two direct repeats cause most human mtDNA deletions, Trends Genet 20, 393–398.

    Article  PubMed  CAS  Google Scholar 

  43. Degoul, F., Nelson, I., Amselem, S., et al. (1991) Different mechanisms inferred from sequences of human mitochondrial DNA deletions in ocular myopathies, Nucleic Acids Res 19, 493–496.

    Article  PubMed  CAS  Google Scholar 

  44. Holt, I. J., Lorimer, H. E., and Jacobs, H. T. (2000) Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA, Cell 100, 515–524.

    Article  PubMed  CAS  Google Scholar 

  45. Krishnan, K. J., Reeve, A. K., Samuels, D. C., et al. (2008) What causes mitochondrial DNA deletions in human cells?, Nat Genet 40, 275–279.

    Article  PubMed  CAS  Google Scholar 

  46. Sadikovic, B., Wang, J., El-Hattab, A., et al. (2010) Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes, PLoS One 5, e15687.

    Article  PubMed  CAS  Google Scholar 

  47. Helm, M. (2006) Post-transcriptional nucleotide modification and alternative folding of RNA, Nucleic Acids Res 34, 721–733.

    Article  PubMed  CAS  Google Scholar 

  48. Florentz, C., Sohm, B., Tryoen-Toth, P., et al. (2003) Human mitochondrial tRNAs in health and disease, Cell Mol Life Sci 60, 1356–1375.

    Article  PubMed  CAS  Google Scholar 

  49. Finsterer, J. (2007) Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu(UUR) mutation, Acta Neurol Scand 116, 1–14.

    Article  PubMed  CAS  Google Scholar 

  50. Koga, Y., Akita, Y., Nishioka, J., et al. (2005) L-arginine improves the symptoms of strokelike episodes in MELAS, Neurology 64, 710–712.

    Article  PubMed  CAS  Google Scholar 

  51. Kirino, Y., Yasukawa, T., Ohta, S., et al. (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease, Proc Natl Acad Sci USA 101, 15070–15075.

    Article  PubMed  CAS  Google Scholar 

  52. Hess, J. F., Parisi, M. A., Bennett, J. L., et al. (1991) Impairment of mitochondrial transcription termination by a point mutation associated with the MELAS subgroup of mitochondrial encephalomyopathies, Nature 351, 236–239.

    Article  PubMed  CAS  Google Scholar 

  53. Shanske, S., Coku, J., Lu, J., et al. (2008) The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or Leigh syndrome: evidence from 12 cases, Arch Neurol 65, 368–372.

    Article  PubMed  Google Scholar 

  54. Chomyn, A., Martinuzzi, A., Yoneda, M., et al. (1992) MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts, Proc Natl Acad Sci USA 89, 4221–4225.

    Article  PubMed  CAS  Google Scholar 

  55. Enriquez, J. A., Chomyn, A., and Attardi, G. (1995) MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination, Nat Genet 10, 47–55.

    Article  PubMed  CAS  Google Scholar 

  56. Holt, I. J., Harding, A. E., Petty, R. K., et al. (1990) A new mitochondrial disease associated with mitochondrial DNA heteroplasmy, Am J Hum Genet 46, 428–433.

    PubMed  CAS  Google Scholar 

  57. Makela-Bengs, P., Suomalainen, A., Majander, A., et al. (1995) Correlation between the clinical symptoms and the proportion of mitochondrial DNA carrying the 8993 point mutation in the NARP syndrome, Pediatr Res 37, 634–639.

    Article  PubMed  CAS  Google Scholar 

  58. Shankar, S. P., Fingert, J. H., Carelli, V., et al. (2008) Evidence for a novel x-linked modifier locus for leber hereditary optic neuropathy, Ophthalmic Genet 29, 17–24.

    Article  PubMed  CAS  Google Scholar 

  59. Tonska, K., Kodron, A., and Bartnik, E. (2010) Genotype-phenotype correlations in Leber hereditary optic neuropathy, Biochim Biophys Acta 1797, 1119–1123.

    Article  PubMed  CAS  Google Scholar 

  60. Torroni, A., Petrozzi, M., D’Urbano, L., et al. (1997) Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484, Am J Hum Genet 60, 1107–1121.

    PubMed  CAS  Google Scholar 

  61. O’Brien, T. W. (2003) Properties of human mitochondrial ribosomes, IUBMB Life 55, 505–513.

    Article  PubMed  Google Scholar 

  62. Lu, J., Qian, Y., Li, Z., et al. (2010) Mitochondrial haplotypes may modulate the phenotypic manifestation of the deafness-associated 12 S rRNA 1555A  >  G mutation, Mitochondrion 10, 69–81.

    Article  PubMed  Google Scholar 

  63. Bykhovskaya, Y., Mengesha, E., Wang, D., et al. (2004) Human mitochondrial transcription factor B1 as a modifier gene for hearing loss associated with the mitochondrial A1555G mutation, Mol Genet Metab 82, 27–32.

    Article  PubMed  CAS  Google Scholar 

  64. Guan, M. X., Yan, Q., Li, X., et al. (2006) Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12 S ribosomal RNA mutations, Am J Hum Genet 79, 291–302.

    Article  PubMed  CAS  Google Scholar 

  65. Zeharia, A., Shaag, A., Pappo, O., et al. (2009) Acute infantile liver failure due to mutations in the TRMU gene, Am J Hum Genet 85, 401–407.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Thanks to Sha Tang, PhD, for creating Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Craigen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Craigen, W.J. (2012). Mitochondrial DNA Mutations: An Overview of Clinical and Molecular Aspects. In: Wong, Ph.D., LJ. (eds) Mitochondrial Disorders. Methods in Molecular Biology, vol 837. Humana Press. https://doi.org/10.1007/978-1-61779-504-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-504-6_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-503-9

  • Online ISBN: 978-1-61779-504-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics