Skip to main content

Assessment of Autophagosome Formation by Transmission Electron Microscopy

  • Protocol
  • First Online:
Plant Fungal Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 835))

Abstract

Autophagy is a complex degradative process by which cytosolic material, including organelles, is randomly sequestered within double-membrane bound vesicles termed autophagosomes and targeted for degradation. Initially described as a nutrient stress adaptation response, the process of autophagy is now recognized as a central mechanism involved in many developmental processes. In this chapter, we provide guidelines to assess the initial steps of autophagy by monitoring autophagic body vacuolar accumulation. We employed a standard electron microscopy approach to observe the vacuoles of nutrient stressed fungal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, Z. and D.J. Klionsky, Eaten alive: a history of macroautophagy. Nat Cell Biol, 2010. 12(9): p. 814–22.

    Article  PubMed  CAS  Google Scholar 

  2. Suzuki, K., et al., Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 2007. 12(2): p. 209–18.

    Article  PubMed  CAS  Google Scholar 

  3. Takeshige, K., et al., Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol, 1992. 119(2): p. 301–11.

    Article  PubMed  CAS  Google Scholar 

  4. Ishihara, N., et al., Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell, 2001. 12(11): p. 3690–702.

    PubMed  CAS  Google Scholar 

  5. Reggiori, F. and D.J. Klionsky, Autophagy in the eukaryotic cell. Eukaryot Cell, 2002. 1(1): p. 11–21.

    Article  PubMed  CAS  Google Scholar 

  6. Kikuma, T., et al., Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae. Eukaryot Cell, 2006. 5(8): p. 1328–36.

    Article  PubMed  CAS  Google Scholar 

  7. Liu, X.H., et al., Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell, 2007. 6(6): p. 997–1005.

    Article  PubMed  CAS  Google Scholar 

  8. Veneault-Fourrey, C., et al., Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science, 2006. 312(5773): p. 580–3.

    Article  PubMed  CAS  Google Scholar 

  9. Hu, G., et al., PI3K signaling of autophagy is required for starvation tolerance and virulenceof Cryptococcus neoformans. J Clin Invest, 2008. 118(3): p. 1186–97.

    Article  PubMed  CAS  Google Scholar 

  10. Klionsky, D.J., et al., A unified nomenclature for yeast autophagy-related genes. Dev Cell, 2003. 5(4): p. 539–45.

    Article  PubMed  CAS  Google Scholar 

  11. Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21(22): p. 2861–73.

    Article  PubMed  CAS  Google Scholar 

  12. Klionsky, D.J., et al., Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008. 4(2): p. 151–75.

    PubMed  CAS  Google Scholar 

  13. Wang, Z., et al., Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol, 2001. 21(17): p. 5742–52.

    Article  PubMed  CAS  Google Scholar 

  14. Kirisako, T., et al., Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol, 1999. 147(2): p. 435–46.

    Article  PubMed  CAS  Google Scholar 

  15. Rose, T.L., et al., Starvation-induced expression of autophagy-related genes in Arabidopsis. Biol Cell, 2006. 98(1): p. 53–67.

    Article  PubMed  CAS  Google Scholar 

  16. Nadal, M. and S.E. Gold, The autophagy genes ATG8 and ATG1 affect morphogenesis and pathogenicity in Ustilago maydis. Mol Plant Pathol. 11(4): p. 463–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. Gold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nadal, M., Gold, S.E. (2012). Assessment of Autophagosome Formation by Transmission Electron Microscopy. In: Bolton, M., Thomma, B. (eds) Plant Fungal Pathogens. Methods in Molecular Biology, vol 835. Humana Press. https://doi.org/10.1007/978-1-61779-501-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-501-5_29

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-500-8

  • Online ISBN: 978-1-61779-501-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics