Advertisement

Glycosaminoglycan Chain Analysis and Characterization (Glycosylation/Epimerization)

  • Shuji Mizumoto
  • Kazuyuki SugaharaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 836)

Abstract

Glycosaminoglycans (GAGs) including chondroitin sulfate (CS), dermatan sulfate (DS), and heparan sulfate/heparin (HS/Hep) are linear polysaccharides and involved in the regulation of various biological events through interaction with functional proteins. GAGs are modified by sulfation at various positions of each saccharide residue and the epimerization of uronic acid residues during the chain’s biosynthesis, resulting in enormous structural diversity. This structural diversity is the basis for the wide range of biological activities of GAGs. Thus, the structural analysis of GAGs is key to understanding their biological functions. This chapter describes detailed instructions for the extraction and structural analysis of GAGs from cultured cells and tissues using a combination of GAG-degrading enzymes and high-performance liquid chromatography.

Key words

Glycosaminoglycans Chondroitin sulfate Dermatan sulfate Heparan sulfate Heparin Hyaluronan Proteoglycan Chondroitinase Heparinase Heparitinase 

Notes

Acknowledgments

This work was supported in part by Grants-in-Aid for Young Scientists (B) 23790066 (to S.M.) from Japan Society for the Promotion of Science, Japan, and Future Drug Discovery and Medical Care Innovation Program (to K.S.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT).

References

  1. 1.
    Iozzo, R. V. (1998) Matrix proteoglycans: From molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652.PubMedCrossRefGoogle Scholar
  2. 2.
    Sugahara, K., Mikami, T., Uyama, T., Mizuguchi, S., Nomura, K., and Kitagawa, H. (2003) Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr. Opin. Struct. Biol. 13, 612–620.PubMedCrossRefGoogle Scholar
  3. 3.
    Sugahara, K. and Mikami, T. (2007) Chondroitin/dermatan sulfate in the central nervous system. Curr. Opin. Struct. Biol. 17, 536–545.PubMedCrossRefGoogle Scholar
  4. 4.
    Bishop, J. R., Schuksz, M., and Esko, J. D. (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–1037.PubMedCrossRefGoogle Scholar
  5. 5.
    Sugahara, K. and Kitagawa, H. (2000) Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr. Opin. Struct. Biol. 10, 518–527.PubMedCrossRefGoogle Scholar
  6. 6.
    Petit, E., Delattre, C., Papy-Garcia, D., and Michaud, P. (2006) Chondroitin sulfate lyases: Applications in analysis and glycobiology, in Advanced in Pharmacology, vol, 53Chondroitin sulfate: structure, role and pharmacological activity” (Volpi, N., ed.), Academic Press, London, UK, pp. 337–356.Google Scholar
  7. 7.
    Yamada, S. and Sugahara, K. (1998) Structure of oligosaccharides isolated from heparan sulfate/heparin and substrate specificities of the degrading enzymes of bacterial origin. Trends in Glycosci. and Glycotechnol. 10, 95–123.CrossRefGoogle Scholar
  8. 8.
    Yoshida, K., Arai, M., Kohno, Y., Maeyama, K., Miyazono, H., Kikuchi, H., Morikawa, K., Tawada, A., and Suzuki, S. (1993) Activity of bacterial eliminases towards dermatan sulphates and dermatan sulphate proteoglycan, in Dermatan sulphate proteoglycans: chemistry, biology, chemical pathology (Scott, J. E., ed.), Portland Press, London, pp. 55–80.Google Scholar
  9. 9.
    Conrad, H. E. (2001) Degradation of heparan sulfate by nitrous acid, in Methods in Molecular Biology, vol. 171 “Proteoglycan protocols” (Iozzo, R. V., ed.), Humana Press, Totowa, New Jersey, pp. 347–351.Google Scholar
  10. 10.
    Yamagata, T., Saito, H., Habuchi, O., and Suzuki, S. (1968) Purification and properties of bacterial chondroitinases and chondrosulfatases. J. Biol. Chem. 243, 1523–1535.PubMedGoogle Scholar
  11. 11.
    Hiyama, K. and Okada, S. (1975) Crystallization and some properties of chondroitinase from Arthrobacter aurescens. J. Biol. Chem. 250, 1824–1828.PubMedGoogle Scholar
  12. 12.
    Michelacci, Y. M. and Dietrich, C. P. (1974) Isolation and partial characterization of an induced chondroitinase B from Flavobacterium heparinum. Biochem. Biophys. Res. Commun. 56, 973–980.PubMedCrossRefGoogle Scholar
  13. 13.
    Ototani, N., Kikuchi, M., and Yosizawa, Z. (1981) Purification of heparinase and heparitinase by affinity chromatography on glycosaminoglycan-bound AH-sepharose 4B. Carbohydr. Res. 88, 291–303.PubMedCrossRefGoogle Scholar
  14. 14.
    Uyama, T., Ishida, M., Izumikawa, T., Trybala, E., Tufaro, F., Bergstrom, T., et al. (2006) Chondroitin 4-O-sulfotransferase-1 regulates “E” disaccharide expression of chondroitin sulfate required for herpes simplex virus infectivity. J. Biol. Chem. 281, 38668–38674.PubMedCrossRefGoogle Scholar
  15. 15.
    Mizumoto, S., Mikami, T., Yasunaga, D., Kobayashi, N., Yamauchi, H., Miyake, A., et al. (2009) Chondroitin 4-O-sulfotransferase-1 is required for somitic muscle development and motor axon guidance in zebrafish. Biochem. J. 419, 387–399.PubMedCrossRefGoogle Scholar
  16. 16.
    Sakaguchi, H., Watanabe, M., Ueoka, C., Sugiyama, E., Taketomi, T., Yamada, S., and Sugahara, K. (2001) Isolation of oligosaccharides from the chondroitin/dermatan sulfate-protein linkage region as reducing sugar chains and preparation of the analytical probes by fluorescent labeling with 2- aminobenzamide. J. Biochem. 129, 107–118PubMedGoogle Scholar
  17. 17.
    Hashiguchi, T., Mizumoto, S., Yamada, S., and Sugahara, K. (2010) Analysis of the structure and neuritogenic activity of chondroitin sulfate/dermatan sulfate hybrid chains from porcine fetal membranes. Glycoconjugate J. 27, 49–60.CrossRefGoogle Scholar
  18. 18.
    Bitter, T. and Muir, H. (1962) A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–334.PubMedCrossRefGoogle Scholar
  19. 19.
    Kinoshita, A. and Sugahara, K. (1999) Microanalysis of glycosaminoglycan -derived oligosaccharides labeled with the fluorophore 2- aminobenzamide by high-performance liquid chromatography: Application to disaccharide composition analysis and exo-sequencing of oligosaccharides. Anal. Biochem. 269, 367–378.PubMedCrossRefGoogle Scholar
  20. 20.
    Kawashima, H., Atarashi, K., Hirose, M., Hirose, J., Yamada, S., Sugahara, K., and Miyasaka, M. (2002) Oversulfated chondroitin/dermatan sulfates containing GlcAβ1/IdoAα1-3GalNAc(4,6-O-disulfate)    interact with L- and P-selectin and chemokines. J. Biol. Chem. 277, 12921–12930.PubMedCrossRefGoogle Scholar
  21. 21.
    Nakagawa, H., Hama, Y., Sumi, T., Li, S. C., Maskos, K., Kalayanamitra, K., et al. (2007) Occurrence of a non-sulfated chondroitin proteoglycan in the dried saliva of Collocalia swiftlets (edible bird’s nest). Glycobiology 17, 157–164.PubMedCrossRefGoogle Scholar
  22. 22.
    Yamada, S., Okada, Y., Ueno, M., Iwata, S., Deepa, S.S., Nishimura, S., et al. (2002) Determination of the glycosaminoglycan-protein linkage region oligosaccharide structures of proteoglycans from Drosophila melanogaster and Caenorhabditis elegans. J. Biol. Chem. 277, 31877–31886.PubMedCrossRefGoogle Scholar
  23. 23.
    Bao, X., Muramatsu, T., and Sugahara, K. (2005) Demonstration of the pleiotrophin-binding oligosaccharide sequences isolated from chondroitin sulfate/dermatan sulfate hybrid chains of embryonic pig brains. J. Biol. Chem. 280, 35318–35328.PubMedCrossRefGoogle Scholar
  24. 24.
    Deepa, S. S., Kalayanamitra, K., Ito, Y., Kongtawelert, P., Fukui, S., Yamada, S., et al. (2007) Novel sulfated octa- and decasaccharides from squid cartilage chondroitin sulfate-E: Sequencing and their application for determination of the epitope structure of monoclonal antibody MO-225. Biochemistry 46, 2453–2465.PubMedCrossRefGoogle Scholar
  25. 25.
    Deepa, S. S., Yamada, S., Fukui, S., and Sugahara, K. (2007) Structural determination of novel sulfated octasaccharides isolated from chondroitin sulfate of shark cartilage and their application for characterizing monoclonal antibody epitopes. Glycobiology 17, 631–645.PubMedCrossRefGoogle Scholar
  26. 26.
    Pothacharoen, P., Kalayanamitra, K., Deepa, S. S., Fukui, S., Hattori, T., Fukushima, N., et al. (2007) Two related but distinct chondroitin sulfate mimetope octasaccharide sequences recognized by monoclonal antibody WF6. J. Biol. Chem. 282, 35232–35246.PubMedCrossRefGoogle Scholar
  27. 27.
    Li, F., Nandini, C. D., Hattori, T., Bao, X., Murayama, D., Nakamura, T., et al. (2010) Structure of pleiotrophin- and hepatocyte growth factor-binding sulfated hexasaccharide determined by biochemical and computational approaches. J. Biol. Chem. 285, 27673–27685.PubMedCrossRefGoogle Scholar
  28. 28.
    Malavaki, C., Mizumoto, S., Karamanos, N., and Sugahara, K. (2008) Recent advances in the structural study of functional chondroitin sulfate and dermatan sulfate in health and disease. Connect. Tissue Res. 49, 133–139.PubMedCrossRefGoogle Scholar
  29. 29.
    McLean M. W., Bruce, J. S., Long, W. F., and Williamson, F. B. (1984) Flavobacterium heparinum 2-O-sulphatase for 2-O-sulphato -∆4,5-glycuronate-terminated oligosaccharides from heparin. Eur. J. Biochem. 145, 607–615.PubMedCrossRefGoogle Scholar
  30. 30.
    Warnick, C. T. and Linker, A. (1972) Purification of an unusual α-glycuronidase from Flavobacteria. Biochemistry 11, 568–572.PubMedCrossRefGoogle Scholar
  31. 31.
    Hamai, A., Morikawa, K., Horie, K., and Tokuyasu, K. (1989) Purification and characterization of hyaluronidase from Streptococcus dysgalactiae. Agric. Biol. Chem. 53, 2163–2168.CrossRefGoogle Scholar
  32. 32.
    Ohya, T. and Kaneko, Y. (1970) Novel hyaluronidase from Streptomyces. Biochim. Biophys. Acta 198, 607–609.PubMedGoogle Scholar
  33. 33.
    Nakazawa, K., Suzuki, N., and Suzuki, S. (1975) Sequential degradation of keratan sulfate by bacterial enzymes and purification of a sulfatase in the enzymatic system. J. Biol. Chem. 250, 905–911.PubMedGoogle Scholar
  34. 34.
    Hashimoto, N., Morikawa, K., Kikuchi, H., Yoshida. K., and Tokuyasu, K. (1988) Purification and charac-terization of kerdtanase. Seikagaku 60, 935.Google Scholar
  35. 35.
    Nakagawa, H., Yamada, T., Chien, J. L., Gardas, A., Kitamikado, M., Li, S. C., and Li, Y. T. (1980) Isolation and characterization of an endo-β-galactosidase from a new strain of Escherichia freundii. J. Biol. Chem. 255, 5955–5959.PubMedGoogle Scholar
  36. 36.
    Nandini, C.D., Mikami, T., Ohta, M., Itoh, N., Akiyama-Nambu, F., and Sugahara, K. (2004) Structural and functional characterization of oversulfated chondroitin sulfate/dermatan sulfate hybrid chains from the notochord of hagfish: Neuritogenic activity and binding activities toward growth factors and neurotrophic factors. J. Biol. Chem. 279, 50799–50809.PubMedCrossRefGoogle Scholar
  37. 37.
    Yanagishita, M. (2001) Isolation of proteoglycans from cell cultures and tissues, in Methods in Molecular Biology, vol. 171 “Proteoglycan protocols” (Iozzo, R. V., ed.), Humana Press, Totowa, New Jersey, pp. 3–10.Google Scholar
  38. 38.
    Brückner, J. (1955) Estimation of monosaccharides by the orcinol-sulphuric acid reaction. Biochem. J. 60, 200–205.PubMedGoogle Scholar
  39. 39.
    Chandrasekhar, S., Esterman, M. A., and Hoffman, H. A. (1987) Microdetermination of proteoglycans and glycosaminoglycans in the presence of guanidine hydrochloride. Anal. Biochem. 161, 103–108.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and TechnologyHokkaido UniversitySapporoJapan

Personalised recommendations