Gene Silencing in Mouse Embryonic Stem Cells

  • Norihiko Sasaki
  • Shoko NishiharaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 836)


Embryonic stem cells (ESCs) are promising tools for regenerative medicine as well as for biotechnological research. However, to exploit ESCs for clinical purposes, a better understanding of the molecular mechanisms that control the pluripotency and differentiation of ESCs is required. Several extrinsic signaling pathways contribute to the maintenance of pluripotency, as well as induction of differentiation, in ESCs. However, the mechanisms that regulate extrinsic signaling in ESCs are largely unknown. Heparan sulfate (HS) is present ubiquitously as a component of cell surface proteoglycans and is known to play crucial roles in the regulation of several signaling pathways. We have validated that RNA interference (RNAi) is a useful method for the functional analysis of some target genes in mouse ESCs (mESCs). Indeed, we have investigated the functions of HS in mESCs by using RNAi and have demonstrated that HS on mESCs is involved in regulating signaling pathways that are important for the maintenance of mESCs. In this chapter, we describe detailed methods for the gene silencing of proteoglycan-related genes in mESCs by RNAi.

Key words

RNA interference Short hairpin RNA Mouse embryonic stem cells EXT1 Heparan sulfate 



We thank Prof. Toshio Kitamura and Prof. Kumiko Ui-Tei for gifting experimental materials. Our research was partially supported by funds from the MEXT, a Grant-in-Aid for Scientific Research (B) to SN, 20370051, 2008–2010, and from MEXT, the Matching Fund for Private Universities, S0901015, 2009–2014.


  1. 1.
    Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.PubMedCrossRefGoogle Scholar
  2. 2.
    Almeida, R. and Allshire, R. C. (2005) RNA silencing and genome regulation. Trends Cell Biol. 15, 251–258.PubMedCrossRefGoogle Scholar
  3. 3.
    Giordano, E., Rendina, R., Peluso, I., and Furia, M. (2002) RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster. Genetics 160, 637–648.PubMedGoogle Scholar
  4. 4.
    Ueda, R. (2001) Rnai: a new technology in the post-genomic sequencing era. J. Neurogenet. 15, 193–204.PubMedCrossRefGoogle Scholar
  5. 5.
    Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.PubMedCrossRefGoogle Scholar
  6. 6.
    Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D. (1998) How cells respond to interferons. Annu. Rev. Biochem. 67, 277–264.CrossRefGoogle Scholar
  7. 7.
    Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., et al. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936–948.PubMedCrossRefGoogle Scholar
  8. 8.
    Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–552.PubMedCrossRefGoogle Scholar
  9. 9.
    Li, J. P., Gong, F., Hagner-McWhirter, A., Forsberg, E., Abrink, M., Kisilevsky, R., et al. (2003) Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J. Biol. Chem. 278, 28363–28366.PubMedCrossRefGoogle Scholar
  10. 10.
    Merry, C. L., Bullock, S. L., Swan, D. C., Backen, A. C., Lyon, M., Beddington, R. S., et al. (2001) The molecular phenotype of heparan sulfate in the Hs2st−/− mutant mouse. J. Biol. Chem. 276, 35429–35434.PubMedCrossRefGoogle Scholar
  11. 11.
    Lamanna, W. C., Baldwin, R. J., Padva, M., Kalus, I., Ten Dam, G., van Kuppevelt, T. H., et al. (2006) Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity. Biochem. J. 400, 63–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.PubMedCrossRefGoogle Scholar
  13. 13.
    Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U.S.A. 78, 7634–7638.PubMedCrossRefGoogle Scholar
  14. 14.
    Keller, G. (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes. Dev. 19, 1129–1155.PubMedCrossRefGoogle Scholar
  15. 15.
    Bernfield, M., Gotte, M., Park, P. W., Reizes, O., Fitzgerald, M. L., et al. (1999) Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777.PubMedCrossRefGoogle Scholar
  16. 16.
    Sasaki, N., Okishio, K., Ui-Tei, K., Saigo, K., Kinoshita-Toyoda, A., Toyoda, H., et al. (2008) Heparan Sulfate Regulates Self-renewal and Pluripotency of Embryonic Stem Cells. J. Biol. Chem. 283, 3594–3606.PubMedCrossRefGoogle Scholar
  17. 17.
    Sasaki, N., Hirano, T., Ichimiya, T., Wakao, M., Hirano, K., Kinoshita-Toyoda, A., et al. (2009) The 3′-phosphoadenosine 5′-phosphosulfate transporters, PAPST1 and 2, contribute to the maintenance and differentiation of mouse embryonic stem cells. PLoS One 4, e8262.PubMedCrossRefGoogle Scholar
  18. 18.
    Lind, T., Tufaro, F., McCormick, C., Lindahl, U., and Lidholt, K. (1998) The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J. Biol. Chem. 273, 26265–26268.PubMedCrossRefGoogle Scholar
  19. 19.
    Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J. C. (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428.PubMedCrossRefGoogle Scholar
  20. 20.
    Smith, A. G. and Hooper, M. L. (1987) Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol. 121, 1–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Yamada, T. and Morishita, S. (2005) Accelerated off-target search algorithm for siRNA. Bioinformatics 21, 1316–1324.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Bioinformatics, Laboratory of Cell BiologySoka UniversityTokyoJapan

Personalised recommendations