Proteoglycans pp 307-322 | Cite as

Modulatory Effects of Proteoglycans on Proteinase Activities

  • Steven Georges
  • Dominique Heymann
  • Marc PadrinesEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 836)


Proteoglycans (PGs), composed of a core protein and one or more covalently attached sulfated glycosaminoglycan (GAG) chains, interact with a wide range of bioactive molecules, such as growth factors and chemokines, to regulate cell behaviors in normal and pathological processes. Additionally, PGs, through their compositional diversity, play a broad variety of roles as modulators of proteinase activities. Interactions of proteinases with other molecules on the plasma membrane anchor and activate them at a specific location on the cell surface. These interactions with macromolecules other than their own protein substrates or inhibitors result in changes in their activity and/or may have important biological effects. Thus, GAG chains induce conformational changes upon their binding to peptides or proteins. This behavior may be related to the ability of GAGs to act as modulators for some proteins (1) by acting as crucial structural elements by the control of proteinase activities, (2) by increasing the protein stability, (3) by permitting some binding to occur, exposing binding regions on the target protein, or (4) by acting as coreceptors for some inhibitors, playing important roles for the acceleration of proteinase inhibition. Understanding the modulatory effects exerted by PGs on proteinase activities is expected to lead to new insights in the understanding of some molecular systems present in pathological states, providing new targets for drug therapy.

Key words

Proteinase activities Proteoglycans Glycosaminoglycans 



This work was supported by the Département Loire Atlantique (Program entitled Atlanthèse). Steven GEORGES received a fellowship from the Département Loire Atlantique. Thanks to Verena STRESING for proof reading and helpful discussions.


  1. 1.
    Lamoureux, F., Baud’huin, M., Duplomb L, Heymann, D., and Rédini, F. (2007) Proteo-glycans: key partners in bone cell biology. BioEssays. 29, 758–771.PubMedCrossRefGoogle Scholar
  2. 2.
    Ruiz Velasco, C., Colliec-Jouault, S., Rédini, F., Heymann, D., and Padrines, M. (2010) Proteoglycans on bone tumor development. Drug Discov. Today. 15, 553–560.CrossRefGoogle Scholar
  3. 3.
    Hardingham, T. E. and Fosang, A. J. (1992). Proteoglycans: many forms and many functions. FASEB J. 6, 861–870.PubMedGoogle Scholar
  4. 4.
    Bernfield, M. (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 68, 729–777.PubMedCrossRefGoogle Scholar
  5. 5.
    Barrett, A. J., Rawlings, N. D., and Woessner, J. F. (2004) The Handbook of Proteolytic Enzymes. 2nd ed. Barrett AJ, Rawlings ND, Woessner JF (Eds), Academic Press, Cambridge, UK.Google Scholar
  6. 6.
    Rawlings, N. D., Tolle, D. P., and Barrett, A. J. (2004) Evolutionary families of peptidase inhibitors. Biochem. J. 378, 705–716.PubMedCrossRefGoogle Scholar
  7. 7.
    Owen, C. A. (2008) Leukocyte cell surface proteinases : regulation of expression, functions, and mechanisms of surface localization. Int. J. Biochem. Cell Biol. 40, 1246–1272.PubMedCrossRefGoogle Scholar
  8. 8.
    Stefanidakis, M. and Koivunen, E. (2006) Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. Blood. 108, 1441–1450.PubMedCrossRefGoogle Scholar
  9. 9.
    Mohammed, F. F., Smookler, D. S., and Khokha, R. (2003) Metalloproteinases, inflammation, and rheumatoid arthritis. Ann Rheum Dis. 62, ii43.Google Scholar
  10. 10.
    Georges, S., Ruiz Velasco, C., Trichet, V., Fortun, Y., Heymann, D., and Padrines, M. (2009) Proteases and bone remodeling. Cytokine Growth Factor Review 20, 29–41.CrossRefGoogle Scholar
  11. 11.
    Brooks, P. C., Strömblad, S., Sanders, L. C., von Schalscha, T. L., Aimes, R. T., Stetler-Stevenson, W. G., et al. (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85, 683–693.PubMedCrossRefGoogle Scholar
  12. 12.
    Redondo-Muñoz, J., Ugarte-Berzal, E., García-Marco, J. A., del Cerro, M. H., Van den Steen, P. E., Opdenakker, G., et al. (2008) α4β1 integrin and 190-kDa CD44v constitute a cell surface docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells. Blood. 112, 169–178.PubMedCrossRefGoogle Scholar
  13. 13.
    Dumin, J. A., Dickeson, S. K., Stricker, T. P., Bhattacharyya-Pakrasi, M., Roby, J. D., Santoro, S. A., et al. (2001) Pro-collagenase-1 (matrix metalloproteinase-1) binds the α2β1 integrin upon release from keratinocytes migrating on type I collagen. J. Biol. Chem. 276, 29368–29374.PubMedCrossRefGoogle Scholar
  14. 14.
    Knauper, V., Will, H., Lopez-Otin, C., Smith, B., Atkinson, S. J., Stanton, H., et al. (1996) Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme. J Biol Chem. 271, 17124–17131.PubMedCrossRefGoogle Scholar
  15. 15.
    Nagase, H. (1998) Cell surface activation of progelatinase A (proMMP-2) and cell migration. Cell Res. 8, 179–186.PubMedGoogle Scholar
  16. 16.
    Yu, W. H. and Woessner, J. F. (2000) Heapran sulphate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J. Biol. Chem. 275, 4183–4191.PubMedCrossRefGoogle Scholar
  17. 17.
    Nabeshima, K., Inoue, T., Shimao, Y., and Sameshima, T. (2002) Matrix metalloproteinases in tumor invasion : role for cell migration. Pathol. Int. 4, 255–264.CrossRefGoogle Scholar
  18. 18.
    Ryu, H. Y., Lee, J., Yang, S., Par, H., Cho, S., Jung, K. C., et al. (2009) Syndecan-2 Functions as a Docking Receptor for Pro-matrix Metalloproteinase-7 in Human Colon Cancer Cells. J. Biol. Chem. 284, 35692–35701.PubMedCrossRefGoogle Scholar
  19. 19.
    Bartolazzi, A., Nocks, A., Aruffo, A., Spring, F., and Stamenkovic, I. (1996) Glycosylation of CD44 is implicated in CD44-mediated cell adhesion to hyaluronan. J. Cell Biol. 132, 1199–1208.PubMedCrossRefGoogle Scholar
  20. 20.
    Yu, W. H., Woessner, J. F., McNeish, J. D., and Stamenkovic, I. (2002) CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodelling. Genes Dev. 16, 307–323.PubMedCrossRefGoogle Scholar
  21. 21.
    Yu, Q. and Stamenkovic, I. (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163–176.PubMedGoogle Scholar
  22. 22.
    Owen, C. A., Hu, Z., Lopez-Otin, C., and Shapiro, S. D. (2004) Membrane-bound matrix metalloproteinase-8 activated polymorphonuclear cells is a potent, tissue inhibitor of metalloproteinase-resistant collagenase and serpinase. J. Immunol. 172, 7791–7803.PubMedGoogle Scholar
  23. 23.
    Davis, G. E., Pintar Allen, K. A., Salazar, R., and Maxwell, S. A. (2001) Matrix metalloproteinase-1 and -9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J. Cell Sci. 114, 917–930.PubMedGoogle Scholar
  24. 24.
    Crabbe, T., Ioannou, C., and Docherty, A. J. (1993) Human progelatinase A can be activated by autolysis at a rate that is concentration-dependent and enhanced by heparin bound to the C-terminal domain. Eur J Biochem. 218, 431–438.PubMedCrossRefGoogle Scholar
  25. 25.
    Sørensen, H. P., Vives, R. R., Manetopoulos, C., Albrechtsen, R., Lydolph, M. C., Jacobsen, J., et al. (2008) Heparan sulfate regulates ADAM12 through a molecular switch mechanism. J Biol Chem. 283, 31920–31932.PubMedCrossRefGoogle Scholar
  26. 26.
    Iida, J., Wilhelmson, K. L., Ng, J., Lee, P., Morrison, C., Tam, E., et al. (2007) Cell surface chondroitin sulfate glycosaminoglycan in melanoma: role in the activation of pro-MMP-2 (pro-gelatinase A) Biochem. J. 403, 553–563.Google Scholar
  27. 27.
    Naito, S., Shiomi, T., Okada, A., Kimura, T., Chijiiwa, M., Fujita, Y., et al. (2007) Expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic cartilage. Pathol Int. 57, 703–711.PubMedCrossRefGoogle Scholar
  28. 28.
    Mort, J. S., Flannery, C. R., Makkerh, J., Krupa, J. C., and Lee, E. R. (2003) Use of antineoepitope antibodies for the analysis of degradative events in cartilage and the molecular basis for neoepitope specificity. Biochem. Soc. Symp. 70, 107–114.PubMedGoogle Scholar
  29. 29.
    Stanton, H., Rogerson, F. M., East, C. J., Golub, S. B., Lawlor, K. E., Meeker, C. T., et al. (2005) ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434, 648–652.PubMedCrossRefGoogle Scholar
  30. 30.
    Gendron, C., Kashiwagi, M., Lim, N. H., Enghild, J. J., Thøgersen, I. B., Hughes, C., et al. (2007) Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J. Biol.Chem. 282, 18294–18306.PubMedCrossRefGoogle Scholar
  31. 31.
    Gao, G., Plaas, A., Thompson, V. P., Jin, S., Zuo, F., and Sandy, J. D. (2004) ADAMTS4 (Aggrecanase-1) Activation on the Cell Surface Involves C-terminal Cleavage by Glycosyl-phosphatidyl Inositol-anchored Membrane Type 4-Matrix Metalloproteinase and Binding of the Activated Proteinase to Chondroitin Sulfate and Heparan Sulfate on Syndecan-1. J. Biol. Chem. 279, 10042–10051.PubMedCrossRefGoogle Scholar
  32. 32.
    Echtermeyer, F., Bertrand, J., Dreier, R., Meinecke, I., Neugebauer, K., Fuerst, M., et al. (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med. 15, 1072–1076.PubMedCrossRefGoogle Scholar
  33. 33.
    Munesue, S., Yoshitomi, Y., Kusano, Y., Koyama, Y., Nishiyama, A., Nakanishi, H., et al. (2007) A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis. J Biol Chem. 282, 28164–28174.PubMedCrossRefGoogle Scholar
  34. 34.
    Nakada, M., Yamada, A., Takino, T., Miyamori, H., Takahashi, T., Yamashita, J., et al. (2001) Suppression of membrane-type 1 matrix metalloproteinase (MMP)-mediated MMP-2 activation and tumor invasion by testican 3 and its splicing variant gene product, N-Tes. Cancer Res. 61, 8896–8902.Google Scholar
  35. 35.
    Nakada, M., Miyamori, H., Yamashita, J., and Sato, H. (2003) Testican 2 abrogates inhibition of membrane-type matrix metalloproteinases by other testican family proteins. Cancer Res. 63, 3364–3369.PubMedGoogle Scholar
  36. 36.
    Schmitt, M., Jaenicke, F., and Graeff, H. (1992) Tumor-associated proteases. Fibrinol. Proteol. 6, 3–26.Google Scholar
  37. 37.
    Cavallo-Medved, D. and Sloane, B.F. (2003) Cell surface cathepsin B: understanding its functional significance. Curr. Top. Dev. Biol. 54, 313–341.PubMedCrossRefGoogle Scholar
  38. 38.
    Podobnik, M., Kuhelj, R., Turk, V., and Turk, D. (1997) Crystal structure of the wild-type human procathepsin B at 2.5 A resolution reveals the native active site of a papain-like cysteine protease zymogen. J. Mol. Biol. 271, 774–788.PubMedCrossRefGoogle Scholar
  39. 39.
    Turk, V., Turk, B., and Turk, D. (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J. 20, 4629–4633.PubMedCrossRefGoogle Scholar
  40. 40.
    Turk, B., Turk, D., and Turk, V. (2000) Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta. 1477, 98–111.PubMedCrossRefGoogle Scholar
  41. 41.
    Pungercar, J. R., Caglic, D., Sajid, M., Dolinar, M., Vasiljeva, O., Pozgan, U., et al. (2009) Autocatalytic processing of procathepsin B is triggered by proenzyme activity. FEBS J. 276, 660–668.PubMedCrossRefGoogle Scholar
  42. 42.
    Caglic, D., Pungercar, J. R., Pejler, G., Turk, V., and Turk, B. (2007) Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide-mature enzyme interactions. J. Biol. Chem. 282, 33076–33085.PubMedCrossRefGoogle Scholar
  43. 43.
    Beckman, M., Freeman, C., Parish, C. R., and Small, D. H. (2009) Activation of cathepsin D by glycosaminoglycans. FEBS J. 276, 7343–7352.PubMedCrossRefGoogle Scholar
  44. 44.
    Klaver, D. W., Wilce, M. C. J., Gasperini, R., Freeman, C., Juliano, J. P., Parish, C., et al. (2010) Glycosaminoglycan-induced activation of the β-secretase (BACE-1) of Alzheimer’s disease. J Neurochem. 112, 1552–1561.PubMedCrossRefGoogle Scholar
  45. 45.
    Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., et al. (1999) Purification and cloning of amyloid precursor protein beta secretase from human brain. Nature 402, 537–540.PubMedCrossRefGoogle Scholar
  46. 46.
    Scholefield, Z., Yates, E. A., Wayne, G., Amour, A., McDowell, W., and Turnbull, J. E. (2003) Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer’s beta-secretase. J. Cell Biol. 163, 97–107.PubMedCrossRefGoogle Scholar
  47. 47.
    Hogg, P. J. and Jackson, C. M. (1990) Heparin promotes the binding of thrombin to fibrin polymer. Quantitative characterization of a thrombin-fibrin polymer-heparin ternary complex. J. Biol. Chem. 265, 241–247.PubMedGoogle Scholar
  48. 48.
    Stein, P. L., van Zonneveld, A. J., Pannekoek, H., and Strickland, S. (1989) Structural domain of tissue-type plasminogen activator that confer stimulation by heparin. J. Biol. Chem. 264, 15441–15444.PubMedGoogle Scholar
  49. 49.
    Frommherz, K. J., Faller, B., and Bieth, J. G. (1991) Heparin strongly decreases the rate of inhibition of neutrophil elastase by α1-proteinase inhibitor. J. Biol. Chem. 266, 15356–15362.PubMedGoogle Scholar
  50. 50.
    Fryer, A., Huang, Y. C., Rao, G., Jacoby, D., Mancilla, E., Whorton, R., et al. (1997) Selective O-desulfation produces nonanticoagulant heparin that retains pharmacological activity in the lung. J. Pharmacol. Exp.Ther. 282, 208–219.PubMedGoogle Scholar
  51. 51.
    Spencer, J. L., Stone, P. J., and Nugent, N. A. (2006) New Insights into the Inhibition of Human Neutrophil Elastase by Heparin. Biochemistry 45, 9104–9120.PubMedCrossRefGoogle Scholar
  52. 52.
    Moreau, T., Baranger, K., Dadé, S., Dallet-Choisy, S., Guyot, N., and Zani, M. L. (2008) Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family. Biochimie 90, 284–295.PubMedCrossRefGoogle Scholar
  53. 53.
    Cadène, M., Boudier, C., Marcillac, G. D., and Bieth, J. G. (1995) Influence of low molecular mass heparin on the kinetics of neutrophil elastase inhibition by mucus proteinase inhibitor. J. Biol.Chem. 270, 13204–13209.PubMedCrossRefGoogle Scholar
  54. 54.
    Ermolieff, J., Duranton, J., Petitou, M., and Bieth, J. (1998) Heparin accelerates the inhibition of cathepsin G by mucus proteinase inhibitor: potent effect of O-butyrylated heparin. Biochem. J. 330, 1369–1374.PubMedGoogle Scholar
  55. 55.
    Walter, M., Plotnick, M., and Schechter, N. M. (1996) Inhibition of human mast cell chymase by secretory leukocyte proteinase inhibitor: enhancement of the interaction by heparin. Arch. Biochem. Biophys. 327, 81–88PubMedCrossRefGoogle Scholar
  56. 56.
    Stein, P. E. and Carrell, R. W. (1995) What do dysfunctional serpins tell us about molecular mobility and disease? Nat. Struct. Biol. 2, 96–113.PubMedCrossRefGoogle Scholar
  57. 57.
    Stratikos, E. and Gettins, P. G. W. (1999) Formation of the covalent serpine proteinase complex involves translocation of the proteinase by more than 70 A and full insertion of the reactive center loop into β-sheet A. Proc. Natl. Acad. Sci. USA. 96, 4808–4813.PubMedCrossRefGoogle Scholar
  58. 58.
    Gettins, P. G. W. (2002) Serpin structure, mechanism and function. Chem. Rev. 102, 4751–4803.PubMedCrossRefGoogle Scholar
  59. 59.
    Desai, U. R., Petitou, M., Björk, I., and Olson, S. T. (1998) Mechanism of heparin activation of antithrombin: evidence for an induced-fit model of allosteric activation involving two interaction subsites. Biochemistry 37, 13033–13041.PubMedCrossRefGoogle Scholar
  60. 60.
    Gupta, V. K. and Gowda, L.R. (2008) Alpha-1-proteinase inhibitor is a heparin binding serpin: molecular interactions with the Lys rich cluster of helix-F domain. Biochimie 90, 749–761.PubMedCrossRefGoogle Scholar
  61. 61.
    Higgins, W. J., Fox, D. M., Kowalski, P.S., Nielsen, J. E., and Worrall, D. M. (2010) Heparin enhances serpin inhibition of the cysteine protease cathepsin L. J. Biol. Chem. 285, 3722–3729.PubMedCrossRefGoogle Scholar
  62. 62.
    Murphy, G., Knäuper, V., Lee, M. H., Amour, A., Worley, J. R., Hutton, M., et al. (2003) Role of TIMPs (tissue inhibitors of metalloproteinases) in pericellular proteolysis: the specificity is in the detail. Biochem. Soc. Symp. 70, 201–212.Google Scholar
  63. 63.
    Amour, A., Slocombe, P. M., Webster, A., Butler, M., Knight, C. G., Smith, B. J., et al. (1998) TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett. 435, 39–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Smith, M. R., Kung, H. F., Durum, S. K., Colburn, N. H., and Sun, Y. (1997) TIMP-3 induces cell death by stabilizing TNF-alpha receptors on the surface of human colon carcinoma cells. Cytokine 9, 770–780.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee, M. H., Atkinson, S., and Murphy, G. (2007) Identification of the extracellular matrix (ECM) binding motifs of tissue inhibitor of metalloproteinases (TIMP)-3 and effective transfer to TIMP-1. J. Biol. Chem. 282, 6887–6898.PubMedCrossRefGoogle Scholar
  66. 66.
    Butler, G. S., Apte, S. S., Willenbrock, F., and Murphy, G. (1999) Human tissue inhibitor of metalloproteinases 3 interacts with both the N- and C-terminal domains of gelatinases A and B. Regulation by polyanions. J. Biol. Chem. 274, 10846–10851.PubMedCrossRefGoogle Scholar
  67. 67.
    Turk, B., Bieth, J. G., Björk, I., Dolenc, I., Turk, D., Cimerman, N., et al. (1995) Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Biol. Chem. Hoppe Seyler 376, 225–230.PubMedCrossRefGoogle Scholar
  68. 68.
    Yan, S. and Sloane, B. F. (2004) Molecular regulation of human cathepsin B: implication in pathologies. Biol. Chem. 384, 845–854.CrossRefGoogle Scholar
  69. 69.
    Sloane, B. F., Rozhin, J., Lah, T. T., Day, N.A., Buck, M., Ryan, R. E., et al. (1988) Tumor cathepsin B and its endogenous inhibitors in metastasis. Adv. Exp. Med. Biol. 233, 259–268PubMedGoogle Scholar
  70. 70.
    Almeida, P. C., Nantes, I. L., Chagas, J. R., Rizzi, C. C., Faljoni-Alario, A., Carmona, E., et al. (2001) Cathepsin B activity regulation heparin-like glycosaminoglycans protect human cathepsin B from alkaline ph-induced inactivation. J. Biol. Chem. 276, 944–951.PubMedCrossRefGoogle Scholar
  71. 71.
    Almeida, P. C., Nantes, I. L., Rizzi, C. C. A., Júdice, W. A., Chagas, J. R., Juliano, L., et al. (1999) Cysteine proteinase activity regulation. A possible role of heparin and heparin-like glycosaminoglycans. J. Biol. Chem. 274, 30433–30438.PubMedCrossRefGoogle Scholar
  72. 72.
    Littlewood-Evans, A., Kokubo, T., Ishibashi, O., Inaoka, T., Wlodarski, B., Gallagher, J. A., et al. (1997) Localization of cathepsin K in human osteoclasts by in situ hybridization and immunohistochemistry. Bone 20, 81–86.PubMedCrossRefGoogle Scholar
  73. 73.
    Li, Z., Hou, W. S., Escalante-Torres, C. R., Geld, B. D., and Bromme, D. (2002) Collagenase activity of cathepsin K depends on complex formation with chondroitin sulfate. J Biol Chem 277, 28669–28676.PubMedCrossRefGoogle Scholar
  74. 74.
    Li, Z., Yasuda, Y., Li, W., Bogyo, M., Katz, N., Gordon, R. E., et al. (2004) Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J. Biol. Chem. 279, 5470–5479.PubMedCrossRefGoogle Scholar
  75. 75.
    Novinec, M., Kovacic, L., Lenarcic, B., and Baici, A. (2010) Conformational flexibility and allosteric regulation of cathepsin K. Biochem. J. 429, 379–389.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Steven Georges
    • 1
    • 2
  • Dominique Heymann
    • 3
    • 4
  • Marc Padrines
    • 1
    • 2
    Email author
  1. 1.INSERM, U957NantesFrance
  2. 2.Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses PrimitivesUniversité de Nantes, Nantes Atlantique UniversitésNantesFrance
  3. 3.INSERM, U957, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses PrimitivesUniversité de Nantes, Nantes Atlantique UniversitésNantesFrance
  4. 4.Centre Hospitalier Universitaire de NantesNantesFrance

Personalised recommendations