Advertisement

Proteoglycans pp 291-305 | Cite as

Shedding of Cell Membrane-Bound Proteoglycans

  • Eon Jeong Nam
  • Pyong Woo ParkEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 836)

Abstract

Membrane-bound proteoglycans function primarily as coreceptors for many glycosaminoglycan (GAG)-binding ligands at the cell surface. The majority of membrane-bound proteoglycans can also function as soluble autocrine or paracrine effectors as their extracellular domains, replete with all GAG chains, are enzymatically cleaved and released from the cell surface by ectodomain shedding. In particular, the ectodomain shedding of syndecans, a major family of cell surface heparan sulfate proteoglycans, is an important posttranslational mechanism that modulates diverse pathophysiological processes. Syndecan shedding is a tightly controlled process that regulates the onset, progression, and resolution of various infectious and noninfectious inflammatory diseases. This review describes methods to induce and measure the shedding of cell membrane-bound proteoglycans, focusing on syndecan shedding as a prototypic example.

Key words

Syndecan Glypican Heparan sulfate proteoglycan Sheddase Matrix metalloproteinase ADAM Inflammation Infection Host defense 

Notes

Acknowledgments

The authors would like to thank past and present members of the Park laboratory for developing essential reagents and constantly improving the described procedures. This work was supported by NIH grants R01 HL094613 and R01 HL107472.

References

  1. 1.
    Bernfield, M., Götte, M., Park, P. W., Reizes, O., Fitzgerald, M. L., Lincecum, J., and Zako, M. (1999) Functions of cell surface heparan sulfate proteoglycans, Annu. Rev. Biochem. 68, 729–777.PubMedCrossRefGoogle Scholar
  2. 2.
    Couchman, J. R. (2010) Transmembrane Signaling Proteoglycans, Annu Rev Cell Dev Biol., 26, 89–114.PubMedCrossRefGoogle Scholar
  3. 3.
    Park, P. W., Reizes, O., and Bernfield, M. (2000) Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters, J. Biol. Chem. 275, 29923–29926.PubMedCrossRefGoogle Scholar
  4. 4.
    Hayashida, K., Bartlett, A. H., Chen, Y., and Park, P. W. (2010) Molecular and cellular mechanisms of ectodomain shedding, Anat. Rec. 293, 925–937.CrossRefGoogle Scholar
  5. 5.
    Steppan, J., Hofer, S., Funke, B., Brenner, T., Henrich, M., Martin, E., et al. (2011) Sepsis and Major Abdominal Surgery Lead to Flaking of the Endothelial Glycocalix, J Surg Res, 165, 136–141.PubMedCrossRefGoogle Scholar
  6. 6.
    Nelson, A., Berkestedt, I., Schmidtchen, A., Ljunggren, L., and Bodelsson, M. (2008) Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma, Shock 30, 623–627.PubMedCrossRefGoogle Scholar
  7. 7.
    Rehm, M., Bruegger, D., Christ, F., Conzen, P., Thiel, M., Jacob, M., et al. (2007) Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia, Circulation 116, 1896–1906.PubMedCrossRefGoogle Scholar
  8. 8.
    Seidel, C., Ringdén, O., and Remberger, M. (2003) Increased levels of syndecan-1 in serum during acute graft-versus-host disease, Transplantation 76, 423–426.PubMedCrossRefGoogle Scholar
  9. 9.
    Joensuu, H., Anttonen, A., Eriksson, M., Makitaro, R., Alfthan, H., Kinnula, V., and Leppa, S. (2002) Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer, Cancer Res. 62, 5210–5217.PubMedGoogle Scholar
  10. 10.
    Yang, Y., Yaccoby, S., Liu, W., Langford, J. K., Pumphrey, C. Y., Theus, A., et al. (2002) Soluble syndecan-1 promotes growth of myeloma tumors in vivo, Blood 100, 610–617.PubMedCrossRefGoogle Scholar
  11. 11.
    Kainulainen, V., Wang, H., Schick, C., and Bernfield, M. (1998) Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids, J. Biol. Chem. 273, 11563–11569.PubMedCrossRefGoogle Scholar
  12. 12.
    Kliment, C. R., Englert, J. M., Gochuico, B. R., Yu, G., Kaminski, N., Rosas, I., and Oury, T. D. (2009) Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis, J Biol Chem 284, 3537–3545.PubMedCrossRefGoogle Scholar
  13. 13.
    Kato, M., Wang, H., Kainulainen, V., Fitzgerald, M. L., Ledbetter, S., Ornitz, D. M., and Bernfield, M. (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2, Nat. Med. 4, 691–697.PubMedCrossRefGoogle Scholar
  14. 14.
    Li, Q., Park, P. W., Wilson, C. L., and Parks, W. C. (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury, Cell 111, 635–646.PubMedCrossRefGoogle Scholar
  15. 15.
    Xu, J., Park, P. W., Kheradmand, F., and Corry, D. B. (2005) Endogenous attenuation of allergic lung inflammation by syndecan-1, J. Immunol. 174, 5758–5765.PubMedGoogle Scholar
  16. 16.
    Park, P. W., Pier, G. B., Hinkes, M. T., and Bernfield, M. (2001) Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence, Nature 411, 98–102.PubMedCrossRefGoogle Scholar
  17. 17.
    Hayashida, A., Bartlett, A. H., Foster, T. J., and Park, P. W. (2009) Staphylococcus aureus beta-toxin induces acute lung injury through syndecan-1, Am. J. Pathol. 174, 509–518.PubMedCrossRefGoogle Scholar
  18. 18.
    Hayashida, K., Parks, W. C., and Park, P. W. (2009) Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines, Blood 114, 3033–3043.PubMedCrossRefGoogle Scholar
  19. 19.
    Hayashida, K., Chen, Y., Bartlett, A. H., and Park, P. W. (2008) Syndecan-1 is an in vivo suppressor of Gram-positive toxic shock, J. Biol. Chem. 283, 19895–19903.PubMedCrossRefGoogle Scholar
  20. 20.
    Katoh, S., Taniguchi, H., Matsubara, Y., Matsumoto, N., Fukushima, K., Kadota, J., et al. (1999) Overexpression of CD44 on alveolar eosinophils with high concentrations of soluble CD44 in bronchoalveolar lavage fluid in patients with eosinophilic pneumonia, Allergy 54, 1286–1292.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang, Q., Teder, P., Judd, N. P., Noble, P. W., and Doerschuk, C. M. (2002) CD44 deficiency leads to enhanced neutrophil migration and lung injury in Escherichia coli pneumonia in mice, Am. J. Pathol. 161, 2219–2228.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim, C. W., Goldberger, O. A., Gallo, R. L., and Bernfield, M. (1994) Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns, Mol. Biol. Cell 5, 797–805.PubMedGoogle Scholar
  23. 23.
    Chen, Y., Bennett, A., Hayashida, A., Hollingshead, S., and Park, P. W. (2007) Streptococcus pneumoniae sheds syndecan-1 ectodomains via ZmpC, a metalloproteinase virulence factor, J. Biol. Chem. 282, 159–167.PubMedCrossRefGoogle Scholar
  24. 24.
    Fitzgerald, M. L., Wang, Z., Park, P. W., Murphy, G., and Bernfield, M. (2000) Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3 sensitive metalloproteinase, J. Cell Biol. 148, 811–824.PubMedCrossRefGoogle Scholar
  25. 25.
    Hayashida, K., Stahl, P. D., and Park, P. W. (2008) Syndecan-1 ectodomain shedding is regulated by the small GTPase Rab5, J. Biol. Chem. 283, 35435–35444.PubMedCrossRefGoogle Scholar
  26. 26.
    Park, P. W., Foster, T. J., Nishi, E., Duncan, S. J., Klagsbrun, M., and Chen, Y. (2004) Activation of syndecan-1 ectodomain shedding by Staphylococcus aureus alpha-toxin and beta-toxin, J. Biol. Chem. 279, 251–258.PubMedCrossRefGoogle Scholar
  27. 27.
    Park, P. W., Pier, G. B., Preston, M. J., Goldberger, O., Fitzgerald, M. L., and Bernfield, M. (2000) Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa, J. Biol. Chem. 275, 3057–3064.PubMedCrossRefGoogle Scholar
  28. 28.
    Popova, T. G., Millis, B., Bradburne, C., Nazarenko, S., Bailey, C., Chandhoke, V., and Popov, S. G. (2006) Acceleration of epithelial cell syndecan-1 shedding by anthrax hemolytic virulence factors, BMC Microbiol. 6, 8–24.PubMedCrossRefGoogle Scholar
  29. 29.
    Subramanian, S. V., Fitzgerald, M. L., and Bernfield, M. (1997) Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor activation, J. Biol. Chem. 272, 14713-14720.PubMedCrossRefGoogle Scholar
  30. 30.
    Yang, Y., Macleod, V., Miao, H. Q., Theus, A., Zhan, F., Shaughnessy, J. D. Jr., et al. (2007) Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis, J. Biol. Chem. 282, 13326–13333.PubMedCrossRefGoogle Scholar
  31. 31.
    Hayashida, K., Johnston, D. R., Goldberger, O., and Park, P. W. (2006) Syndecan-1 expression in epithelial cells is induced by TGF-beta through a PKA-dependent pathway, J. Biol. Chem. 281, 24365–24374.PubMedCrossRefGoogle Scholar
  32. 32.
    Ding, K., Lopez-Burks, M., Sanchez-Duran, J. A., Korc, M., and Lander, A. D. (2005) Growth factor-induced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells, J. Cell Biol. 171, 729–738.PubMedCrossRefGoogle Scholar
  33. 33.
    Reizes, O., Goldberger, O., Smith, A. C., Xu, Z., Bernfield, M., and Bickel, P. E. (2006) Insulin promotes shedding of syndecan ectodomains from 3T3-L1 adipocytes: a proposed mechanism for stabilization of extracellular lipoprotein lipase, Biochemistry 45, 5703–5711.PubMedCrossRefGoogle Scholar
  34. 34.
    Day, R. M., Mitchell, T. J., Knight, S. C., and Forbes, A. (2003) Regulation of epithelial syndecan-1 expression by inflammatory cytokines, Cytokine 21, 224–233.PubMedCrossRefGoogle Scholar
  35. 35.
    Henry-Stanley, M. J., Zhang, B., Erlandsen, S. L., and Wells, C. L. (2006) Synergistic effect of tumor necrosis factor-alpha and interferon-gamma on enterocyte shedding of syndecan-1 and associated decreases in internalization of Listeria monocytogenes and Staphylococcus aureus, Cytokine 34, 252–259.PubMedCrossRefGoogle Scholar
  36. 36.
    Charnaux, N., Brule, S., Chaigneau, T., Saffar, L., Sutton, A., Hamon, M., et al. (2005) RANTES (CCL5) induces a CCR5-dependent accelerated shedding of syndecan-1 (CD138) and syndecan-4 from HeLa cells and forms complexes with the shed ectodomains of these proteoglycans as well as with those of CD44, Glycobiology 15, 119–130.PubMedCrossRefGoogle Scholar
  37. 37.
    Brule, S., Charnaux, N., Sutton, A., Ledoux, D., Chaigneau, T., Saffar, L., and Gattegno, L. (2006) The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9, Glycobiology 16, 488–501.PubMedCrossRefGoogle Scholar
  38. 38.
    Endo, K., Takino, T., Miyamori, H., Kinsen, H., Yoshizaki, T., Furukawa, M., and Sato, H. (2003) Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration, J. Biol. Chem. 278, 40764–40770.PubMedCrossRefGoogle Scholar
  39. 39.
    Pruessmeyer, J., Martin, C., Hess, F. M., Schwarz, N., Schmidt, S., Kogel, T., et al. (2010) A disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation-induced shedding of syndecan-1 and -4 by lung epithelial cells, J Biol Chem 285, 555–564.PubMedCrossRefGoogle Scholar
  40. 40.
    Chung, M. C., Popova, T. G., Millis, B. A., Mukherjee, D. V., Zhou, W., Liotta, L. A., et al. (2006) Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors, J. Biol. Chem. 281, 31408–31418.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division of Respiratory DiseasesChildren’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations