Advertisement

Proteoglycans pp 259-284 | Cite as

Models for Studies of Proteoglycans in Kidney Pathophysiology

  • Scott J. HarveyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 836)

Abstract

Proteoglycans (PGs) impact many aspects of kidney health and disease. Models that permit genetic dissection of PG core protein and glycosaminoglycan (GAG) function have been instrumental to understanding their roles in the kidney. Matrix-associated PGs do not serve critical structural roles in the organ, nor do they contribute significantly to the glomerular barrier under normal conditions, but their abnormal expression influences fibrosis, inflammation, and progression of kidney disease. Most core proteins are dispensable for nephrogenesis (glypican-3 being an exception) and for maintenance of function in adult life, but their loss alters susceptibility to experimental kidney injury. In contrast, kidney development is exquisitely sensitive to GAG expression and fine structure as evidenced by the severe phenotypes of mutants for genes involved in GAG biosynthesis. This article reviews PG expression in normal kidney and the abnormalities caused by their disruption in mice and man.

Key words

Heparan sulfate Nephrogenesis Glomerulus Podocyte 

Notes

Acknowledgments

The author is supported by grants from the Agence Nationale de la Recherche (ANR) and the Inserm Avenir program.

References

  1. 1.
    Raats, C. J., van den Born, J., and Berden, J. H. (2000) Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int. 57, 385–400.PubMedCrossRefGoogle Scholar
  2. 2.
    Little, M., Georgas, K., Pennisi, D., and Wilkinson, L. (2010) Kidney development: two tales of tubulogenesis. Curr Top Dev Biol. 90, 193–229.PubMedCrossRefGoogle Scholar
  3. 3.
    Steer, D. L., Shah, M. M., Bush, K. T., Stuart, R. O., Sampogna, R. V., Meyer, T. N., et al (2004) Regulation of ureteric bud branching morphogenesis by sulfated proteoglycans in the developing kidney. Dev Biol. 272, 310–327.PubMedCrossRefGoogle Scholar
  4. 4.
    Machuca, E., Benoit, G., and Antignac, C. (2009) Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum Mol Genet. 18, R185–194.PubMedCrossRefGoogle Scholar
  5. 5.
    Kanwar, Y. S., Linker, A., and Farquhar, M. G. (1980) Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 86, 688–693.PubMedCrossRefGoogle Scholar
  6. 6.
    Iozzo, R. V. (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol. 6, 646–6956.PubMedCrossRefGoogle Scholar
  7. 7.
    Bezakova, G. and Ruegg, M. A. (2003) New insights into the roles of agrin. Nat Rev Mol Cell Biol. 4, 295–308.PubMedCrossRefGoogle Scholar
  8. 8.
    Burgess, R. W., Skarnes, W. C., and Sanes, J. R. (2000) Agrin isoforms with distinct amino termini: Differential expression, localization, and function. J Cell Biol. 151, 41–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Raats, C. J., Bakker, M. A., Hoch, W., Tamboer, W. P., Groffen, A. J., van den Heuvel, L. P., et al (1998) Differential expression of agrin in renal basement membranes as revealed by domain-specific antibodies. J Biol Chem. 273, 17832–17838.PubMedCrossRefGoogle Scholar
  10. 10.
    Reif, R., Sales, S., Hettwer, S., Dreier, B., Gisler, C., Wölfel, J., et al (2007) Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. FASEB J. 21, 3468–3478.PubMedCrossRefGoogle Scholar
  11. 11.
    Groffen, A. J., Ruegg, M. A., Dijkman, H., van de Velden, T. J., Buskens, C. A., van den Born, J., et al (1998) Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J Histochem Cytochem. 46, 19–27.PubMedCrossRefGoogle Scholar
  12. 12.
    Lin, W., Burgess, R. W., Dominguez, B., Pfaff, S. L., Sanes, J. R., and Lee, K. F. (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057–1064.PubMedCrossRefGoogle Scholar
  13. 13.
    Harvey, S. J., Jarad, G., Cunningham, J., Rops, A. L., van der Vlag, J., Berden, J. H., et al (2007) Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am J Pathol. 171, 139–152.PubMedCrossRefGoogle Scholar
  14. 14.
    Yard, B. A., Kahlert, S., Engelleiter, R., Resch, S., Waldherr, R., Groffen, A. J., et al (2001) Decreased glomerular expression of agrin in diabetic nephropathy and podocytes, cultured in high glucose medium. Exp Nephrol. 9, 214–222.PubMedCrossRefGoogle Scholar
  15. 15.
    van den Hoven, M. J., Rops, A. L., Bakker, M., Aten, J., Rutjes, N., Roestenberg, P., et al (2006) Increased expression of heparanase in overt diabetic nephropathy. Kidney Int. 70, 2100–2108.PubMedGoogle Scholar
  16. 16.
    Wijnhoven, T. J., van den Hoven, M. J., Ding, H., van Kuppevelt, T. H., van der Vlag, J., Berden, J. H., et al (2008) Heparanase induces a differential loss of heparan sulfate domains in overt diabetic nephropathy. Diabetologia 51, 372–382.PubMedCrossRefGoogle Scholar
  17. 17.
    Joosten, S. A., Siipkens, Y. W., van Ham, V., Trouw, L. A., van der Vlag, J., van den Heuvel, B., et al (2005) Antibody response against the glomerular basement membrane protein agrin in patients with transplant glomerulopathy. Am J Transplant. 5, 383–393.PubMedCrossRefGoogle Scholar
  18. 18.
    Groffen, A. J., Hop, F. W., Tryggvason, K., Dijkman, H., Assmann, K. J., Veerkamp, J. H., et al (1997) Evidence for the existence of multiple heparan sulfate proteoglycans in the human glomerular basement membrane and mesangial matrix. Eur J Biochem. 247, 175–182.PubMedCrossRefGoogle Scholar
  19. 19.
    Groffen, A. J. A., Veerkamp, J. H., Monnens, L. A. H., and van den Heuvel, L. P. (1999) Recent insights into the structure and functions of heparan sulfate proteoglycans in the human glomerular basement membrane. Nephrol Dial Transplant. 14, 2119–2129.PubMedCrossRefGoogle Scholar
  20. 20.
    Handler, M., Yurchenco, P. D., and Iozzo, R. V. (1997) Developmental expression of perlecan during murine embryogenesis. Dev Dyn. 210, 130–145.PubMedCrossRefGoogle Scholar
  21. 21.
    Arikawa-Hirasawa, E., Watanabe, H., Takami, H., Hassell, J. R., and Yamada, Y. (1999) Perlecan is essential for cartilage and cephalic development. Nature Gen. 23, 354–358.CrossRefGoogle Scholar
  22. 22.
    Costell, M., Gustafsson, E., Aszodi, A., Mörgelin, M., Bloch, W., Hunziker, E., et al (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol. 147, 1109–1122.PubMedCrossRefGoogle Scholar
  23. 23.
    Rossi, M., Morita, H., Sormunen, R., Airenne, S., Kreivi, M., Wang, L., et al (2003) Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J. 22, 236–245.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhou, Z., Wang, J., Cao, R., Morita, H., Soininen, R., Chan, K. M., et al (2004) Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res. 64, 4699–4702.PubMedCrossRefGoogle Scholar
  25. 25.
    Tran, P. K., Tran-Lundmark, K., Soininen, R., Tryggvason, K., Thyberg, J., and Hedin, U. (2004) Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan. Circ Res. 94, 550–55.8Google Scholar
  26. 26.
    Morita, H., Yoshimura, A., Inui, K., Ideura, T., Watanabe, H., Wang, L., et al (2005) Heparan sulfate of perlecan is involved in glomerular filtration. J Am Soc Nephrol. 16, 17031710.PubMedCrossRefGoogle Scholar
  27. 27.
    Goldberg, S., Harvey, S. J., Cunningham, J., Tryggvason, K., and Miner, J. H. (2009) Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrol Dial Transplant. 24, 2044–2051.PubMedCrossRefGoogle Scholar
  28. 28.
    Conde-Knape, K. (2001) Heparan sulfate proteoglycans in experimental models of diabetes: a role for perlecan in diabetes complications. Diabetes Metab Res Rev. 17, 412–421.PubMedCrossRefGoogle Scholar
  29. 29.
    Husain, M., D’Agati, V. D., He, J. C., Klotman, M. E., and Klotman, P. E. (2005) HIV-1 Nef induces dedifferentiation of podocytes in vivo: a characteristic feature of HIVAN. AIDS 19, 1975–1980.PubMedCrossRefGoogle Scholar
  30. 30.
    Arora, S., Husain, M., Kumar, D., Patni, H., Pathak, S., Mehrotra, D., et al (2009) Human immunodeficiency virus downregulates podocyte apoE expression. Am J Physiol Renal Physiol. 297, F653-F661.PubMedCrossRefGoogle Scholar
  31. 31.
    Halfter, W., Dong, S., Schurer, B., and Cole, G. J. (1998) Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem. 273, 25404–25412.PubMedCrossRefGoogle Scholar
  32. 32.
    Dong, S., Cole, G. J., and Halfter, W. (2003) Expression of type XVIII collagen and localization of its glycosaminoglycan attachment sites. J Biol Chem. 278, 1700–1707.PubMedCrossRefGoogle Scholar
  33. 33.
    Saarela, J., Rehn, M., Oikarinen, A., Autio-Harmainen, H., and Pihlajaniemi, T. (1998) The short and long forms of type XVIII collagen show clear tissue specificities in their expression and location in basement membrane zones in humans. Am J Pathol. 153, 611–626.PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki, O. T., Sertie, A. L., Der Kaloustian, V.M., Kok, F., Carpenter, M., Murray, J., et al (2002) Molecular analysis of collagen XVIII reveals novel mutations, presence of a third isoform, and possible genetic heterogeneity in Knobloch syndrome. Am J Hum Genet. 71, 1320–1329.PubMedCrossRefGoogle Scholar
  35. 35.
    Miosge, N., Simniok, T., Sprysch, P., and Herken, R. (2003) The collagen type XVIII endostatin domain is co-localized with perlecan in basement membranes in vivo. J Histochem Cytochem. 51, 285–296.PubMedCrossRefGoogle Scholar
  36. 36.
    O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.PubMedCrossRefGoogle Scholar
  37. 37.
    Karumanchi, S. A., Jha, V., Ramachandran, R., Karihaloo, A., Tsiokas, L., Chan, B., et al (2001) Cell surface glypicans are low-affinity endostatin receptors. Mol Cell. 7, 811–822.PubMedCrossRefGoogle Scholar
  38. 38.
    Karihaloo, A., Karumanchi, S. A., Barasch, J., Jha, V., Nickel, C. H., Yang, J., et al (2001) Endostatin regulates branching morphogenesis of renal epithelial cells and ureteric bud. Proc Natl Acad Sci USA 98, 1250912514.PubMedCrossRefGoogle Scholar
  39. 39.
    Fukai, N., Eklund, L., Marneros, A. G., Oh, S. P, Keene, D. R., Tamarkin, L., et al (2002) Lack of collagen XVIII/endostatin results in eye abnormalities. EMBO J. 21, 1535–1544.PubMedCrossRefGoogle Scholar
  40. 40.
    Utriainen, A., Sormunen, R., Kettunen, M., Carvalhaes, L. S., Sajanti, E., Eklund, L., et al (2004) Structurally altered basement membranes and hydrocephalus in a type XVIII collagen deficient mouse line. Hum Mol Genet. 13, 2089–2099.PubMedCrossRefGoogle Scholar
  41. 41.
    Hamano, Y., Okude, T., Shirai, R., Sato, I., Kimura, R., Ogawa, M., et al (2010) Lack of collagen XVIII/endostatin exacerbates immune-mediated glomerulonephritis. J Am Soc Nephrol. 21, 1445–1455.PubMedCrossRefGoogle Scholar
  42. 42.
    Ichinose, K., Maeshima, Y., Yamamoto, Y., Kitayama, H., Takazawa, Y., Hirokoshi, K., et al (2005) Antiangiogenic endostatin peptide ameliorates renal alterations in the early stage of a type 1 diabetic nephropathy model. Diabetes 54, 2891–2903.PubMedCrossRefGoogle Scholar
  43. 43.
    Kawashima, H., Watanabe, N., Hirose, M., Sun, X., Atarashi, K., Kimura, T., et al (2003) Collagen XVIII, a basement membrane heparan sulfate proteoglycan, interacts with L-selectin and monocyte chemoattractant protein-1. J Biol Chem. 278, 13069–13076.PubMedCrossRefGoogle Scholar
  44. 44.
    Celie, J. W., Rutjes, N. W. P., Keuning, E. D., Soininen, R., Heljasvaara, R., Pihlajaniemi, T., et al (2007) Subendothelial heparan sulfate proteoglycans become major L-selectin and monocyte chemoattractant protein-1 ligands upon renal ischemia/reperfusion. Am J Pathol. 170, 1865–1878.PubMedCrossRefGoogle Scholar
  45. 45.
    Bellini, M. H., Coutinho, E. L., Filgueiras, T. C., Maciel, T. T., and Schor, N (2007) Endostatin expression in the murine model of ischaemia/reperfusion-induced acute renal failure. Nephrology (Carlton) 12, 459–465.CrossRefGoogle Scholar
  46. 46.
    Maciel, T. T., Coutinho, E. L., Soares, D., Achar, E., Schor, N., and Bellini, M. H. (2008) Endostatin, an antiangiogenic protein, is expressed in the unilateral ureteral obstruction mice model. J Nephrol. 21, 753–760.PubMedGoogle Scholar
  47. 47.
    Cichy, M. C., Rocha, F. G., Tristão, V. R., Pessoa, E. A., Cenedeze, M. A., Nürmberg Junior, R., et al (2009) Collagen XVIII/endostatin expression in experimental endotoxemic acute renal failure. Braz J Med Biol Res. 42, 11501155.PubMedCrossRefGoogle Scholar
  48. 48.
    Passos-Bueno, M. R., Suzuki, O. T., Armelin-Correa, L. M., Sertié, A. L., Errera, F. I., Bagatini, K., et al (2006) Mutations in collagen 18a1 (COL18A1) and their relevance to the human phenotype. Anais Acad Bras Cinècmias 78, 123–131.Google Scholar
  49. 49.
    Williams, T. A., Kirkby, G. R., Williams, F., and Ainsworth, J. R. (2008) A phenotypic variant of Knobloch syndrome. Ophthalmic Genet. 29, 85–86.PubMedCrossRefGoogle Scholar
  50. 50.
    Czeizel, A. E., Göblyös, P., Kustos, G., Mester, E., and Paraicz, E. (1992) The second report of Knobloch syndrome. Am J Med Genet. 42, 777–779.PubMedCrossRefGoogle Scholar
  51. 51.
    Xian, X., Gopal, S., and Couchman, J. R. (2010) Syndecans as receptors and organizers of the extracellular matrix. Cell Tissue Res. 339, 31–46.PubMedCrossRefGoogle Scholar
  52. 52.
    Cevikbas, F., Schaefer, L., Uhlig, P., Robenek, H., Theilmeier, G., Echtermeyer, F., et al (2008) Unilateral nephrectomy leads to up-regulation of syndecan-2 and TGF-beta-mediated glomerulosclerosis in syndecan-4 deficient male mice. Matrix Biol. 27, 42–52.PubMedCrossRefGoogle Scholar
  53. 53.
    David, G., Bai, X. M., Van der Schueren, B., Marynen, P., Cassiman, J. J., and Van den Berghe, H. (1993) Spatial and temporal changes in the expression of fibroglycan (syndecan-2) during mouse embryonic development. Development 119, 841–854.PubMedGoogle Scholar
  54. 54.
    Tsuzuki, S., Kojima, T., Katsumi, A., Yamazaki, T., Sugiura, I., and Saito, H. (1997) Molecular cloning, genomic organization, promoter activity, and tissue-specific expression of the mouse ryudocan gene. J Biochem. 122, 17–24.PubMedGoogle Scholar
  55. 55.
    Ishiguro, K., Kadomatsu, K., Kojima, T., Muramatsu, H., Matsuo, S., Kusugami, K., et al (2001) Syndecan-4 deficiency increases susceptibility to k-carrageenan-induced renal damage. Lab Invest. 81, 509–516.PubMedCrossRefGoogle Scholar
  56. 56.
    Rops, A. L., Götte, M., Baselmans, M. H., van den Hoven, M. J., Steenbergen, E. J., Lensen, J. F., et al (2007) Syndecan-1 deficiency aggravates anti-glomerular basement membrane nephritis. Kidney Int. 72, 1204–1215.PubMedCrossRefGoogle Scholar
  57. 57.
    Rops, A. L., van den Hoven, M. J., Baselmans, M. M., Lensen, J. F., Wijnhoven, T. J., van den Heuvel, L. P., et al (2008) Heparan sulfate domains on cultured activated glomerular endothelial cells mediate leukocyte trafficking. Kidney Int. 73, 52–62.PubMedCrossRefGoogle Scholar
  58. 58.
    Yung, S., Woods, A., Chan, T. M., Davies, M., Williams, J. D., and Couchman, J. R. (2010) Syndecan-4 up-regulation in proliferative renal disease is related to microfilament organization. FASEB J. 15, 1631–1633.Google Scholar
  59. 59.
    Filmus, J., Capurro, M., and Rast, J. (2009) Glypicans. Genome Biol. 9, 224.CrossRefGoogle Scholar
  60. 60.
    Litwack, E. D., Ivins, J. K., Kumbasar, A., Paine-Saunders, S., Stipp, C. S., and Lander, A. D. (1998) Expression of the heparan sulfate proteoglycan glypican-1 in the developing rodent. Dev Dyn. 211, 72–87.PubMedCrossRefGoogle Scholar
  61. 61.
    Grisaru, S., Cano-Gauci, D., Tee, J., Filmus, J., and Rosenblum, N. D. (2001) Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev Biol. 231, 31–46.PubMedCrossRefGoogle Scholar
  62. 62.
    Pellegrini, M., Pilia, G., Pantano, S., Lucchini, F., Uda, M., Fumi, M., et al (1998) Gpc3 expression correlates with the phenotype of the Simpson-Golabi-Behmel syndrome. Dev Dyn. 213, 431–439.PubMedCrossRefGoogle Scholar
  63. 63.
    Watanabe, K., Yamada, H., and Yamaguchi, Y. (1995) K-glypican: a novel GPI-anchored heparan sulfate proteoglycan that is highly expressed in developing brain and kidney. J Cell Biol. 130, 1207–1218.PubMedCrossRefGoogle Scholar
  64. 64.
    Saunders, S., Saunders, S. P., and Lander, A. D. (1997) Expression of the cell surface proteoglycan glypican-5 is developmentally regulated in kindey, limb and brain. Dev Biol. 190, 78–93.PubMedCrossRefGoogle Scholar
  65. 65.
    Veugelers, M., De Cat, B., Ceulemans, H., Bruystens, A. M., Coomans, C., Dürr, J., et al (1999) Glypican-6, a new member of the glypican family of cell surface heparan sulfate proteoglycans. J Biol Chem. 274, 26968–26977.PubMedCrossRefGoogle Scholar
  66. 66.
    Jen, Y. H., Musacchio, M., and Lander, A. D. (2009) Glypican-1 controls brain size through regulation of fibroblast growth factor signaling in early neurogenesis. Neural Dev. 4, 33.PubMedCrossRefGoogle Scholar
  67. 67.
    Cano-Gauci, D. F., Song, H. H., Yang, H., McKerlie, C., Choo, B., Shi, W., et al (1999) Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol. 146, 255–264.PubMedGoogle Scholar
  68. 68.
    Ng, A., Wong, M., Viviano, B., Erlich, J. M., Alba, G., Pflederer, C., et al (2009) Loss of glypican-3 function causes growth factor-dependent defects in cardiac and coronary vascular development. Dev Biol. 335, 208–215.PubMedCrossRefGoogle Scholar
  69. 69.
    Hartwig, S., Hu, M. C., Cella, C., Piscione, T., Filmus, J., and Rosenblum, N. D. (2005) Glypican-3 modulates inhibitory Bmp2-Smad signaling to control renal development in vivo. Mech Dev. 122, 928–938.PubMedCrossRefGoogle Scholar
  70. 70.
    Pilia, G., Hughes-Benzie, R. M., MacKenzie, A., Baybayan, P., Chen, E. Y., Huber, R., et al (1996) Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 12, 241–247.PubMedCrossRefGoogle Scholar
  71. 71.
    Xiong, J., Wang, Y., Zhu, Z., Liu, J., Wang, Y., Zhang, C., et al (2007) NG2 proteoglycan increases mesangial cell proliferation and extracellular matrix production. Biochem Biophys Res Commun. 361, 960–967.PubMedCrossRefGoogle Scholar
  72. 72.
    Amenta, P. S., Scivoletti, N. A., Newman, M. D., Sciancalepore, J. P., Li, D., and Myers, J. C. (2005) Proteoglycan-collagen XV in human tissues is seen linking banded collagen fibers subjacent to the basement membrane. J Histochem Cytochem. 53, 165–176.PubMedCrossRefGoogle Scholar
  73. 73.
    Hägg, P. M., Hägg, P. O., Peltonen, S., Autio-Harmainen, H., and Pihlajaniemi, T. (1997) Location of type XV collagen in human tissues and its accumulation in the interstitial matrix of the fibrotic kidney. Am J Pathol. 150, 2075–2086.PubMedGoogle Scholar
  74. 74.
    Muona, A., Eklund, L., Väisänen, T., and Pihlajaniemi, T. (2002) Developmentally regulated expression of type XV collagen correlates with abnormalities in Col15a1(–/–) mice. Matrix Biol. 21, 89–102.PubMedCrossRefGoogle Scholar
  75. 75.
    Lauer, M., Scruggs, B., Chen, S., Wassenhove-McCarthy, D, and McCarthy, K. J. (2007) Leprecan distribution in the developing and adult kidney. Kidney Int. 72, 82–91.PubMedCrossRefGoogle Scholar
  76. 76.
    Vranka, J. A., Pokidysheva, E., Hayashi, L., Zientek, K., Mizuno, K., Ishikawa, Y., et al (2010) Prolyl 3-hydroxylase 1 null mice display abnormalities in fibrillar collagen-rich tissues such as tendons, skin, and bones. J Biol Chem. 285, 17253–17262.PubMedCrossRefGoogle Scholar
  77. 77.
    McCarthy, K. J., Accavitti, M. A., and Couchman, J. R. (1989) Immunological characterization of a basement membrane-specific chondroitin sulfate proteoglycan. J Cell Biol. 109, 3187–3198.PubMedCrossRefGoogle Scholar
  78. 78.
    McCarthy, K. J., Bynum, K., St John, P. L., Abrahamson, D. R., and Couchman, J. R. (1993) Basement membrane proteoglycans in glomerular morphogenesis: chondroitin sulfate proteoglycan is temporally and spatially restricted during development. J Histochem Cytochem. 41, 401–414.PubMedCrossRefGoogle Scholar
  79. 79.
    Wu, R. R. and Couchman, J. R. (1997) cDNA cloning of the basement membrane chondroitin sulfate proteoglycan core protein, bamacan: a five domain structure including coiled-coil motifs. J Cell Biol. 136, 433–444.PubMedCrossRefGoogle Scholar
  80. 80.
    Ehara, T., Carone, F. A., McCarthy, K. J., and Couchman, J. R. (1994) Basement membrane chondroitin sulfate proteoglycan alterations in a rat model of polycystic kidney disease. Am J Pathol. 144, 612–621.PubMedGoogle Scholar
  81. 81.
    McCarthy, K. J., Abrahamson, D. R., Bynum, K. R., St John, P. L., and Couchman, J. R. (1994) Basement membrane-specific chondroitin sulfate proteoglycan is abnormally associated with the glomerular capillary basement membrane of diabetic rats. J Histochem Cytochem. 42, 473–484.PubMedCrossRefGoogle Scholar
  82. 82.
    Ghiselli, G., Siracusa, L. D., and Iozzo, R. V. (1999) Complete cDNA cloning, genomic organization, chromosomal assignment, functional characterization of the promoter, and expression of the murine Bamacan gene. J Biol Chem. 274, 17384–17393.PubMedCrossRefGoogle Scholar
  83. 83.
    Schaefer, L. and Iozzo, R. V. (2008) Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem. 283, 21305–21309.PubMedCrossRefGoogle Scholar
  84. 84.
    Stokes, M. B., Holler, S., Cui, Y., Hudkins, K. L., Eitner, F., Fogo, A., et al (2000) Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease. Kidney Int. 57, 487–498.PubMedCrossRefGoogle Scholar
  85. 85.
    Schaeffer, L., Grone, H.-J., Raslik, I., Robenek, H., Ugorcakova, J., Budny, S., et al (2000) Small proteoglycans of normal adult human kidney: Distinct expression patterns of decorin, biglycan, fibromodulin and lumican. Kidney Int. 58, 1557–1568.CrossRefGoogle Scholar
  86. 86.
    Schaefer, L., Mihalik, D., Babelova, A., Krzyzankova, M., Gröne, H. J., Iozzo, R. V., et al (2004) Regulation of fibrillin-1 by biglycan and decorin is important for tissue preservation in the kidney during pressure-induced injury. Am J Pathol. 165, 383–396.PubMedCrossRefGoogle Scholar
  87. 87.
    Williams, K. J., Qiu, G., Usui, H. K., Dunn, S. R., McCue, P., Bottinger, E., et al (2007) Decorin deficiency enhances progressive nephropathy in diabetic mice. Am J Pathol. 171, 1441–1450.PubMedCrossRefGoogle Scholar
  88. 88.
    Merline, R., Lazaroski, S., Babelova, A., Tsalastra-Greul, W., Pfeilschifter, J., Schluter, K. D., et al (2009) Decorin deficiency in diabetic mice: aggravation of nephropathy due to overexpression of profibrotic factors, enhances apoptosis and mononuclear cell infiltration. J Physiol Pharmacol. 60, 5–13.PubMedGoogle Scholar
  89. 89.
    Schaefer, L., Macakova, K., Raslik, I., Micegova, M., Gröne, H. J., Schönherr, E., et al (2002) Absence of decorin adversely influences tubulointerstitial fibrosis of the obstructed kidney by enhanced apoptosis and increased inflammatory reaction. Am J Pathol. 160, 1181–1191.PubMedCrossRefGoogle Scholar
  90. 90.
    Isaka, Y., Brees, D. K., Ikegaya, K., Kaneda, Y., Imai, E., Noble, N. A., et al (1996) Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat Med. 2, 418–423.PubMedCrossRefGoogle Scholar
  91. 91.
    Border, W. A., Noble, N. A., Yamamoto, T., Harper, J. R., Yamaguchi, Y., Pierschbacher, M. D., et al (1992) Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 360, 361–364.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhang, Z., Wu, F., Zheng, F., and Li, H. (2010) Adenovirus-mediated decorin gene transfection has therapeutic effects in a streptozocin-induced diabetic rat model. Nephron Exp Nephrol. 116, e11–21.PubMedCrossRefGoogle Scholar
  93. 93.
    Wu, H., Wang, S., Xue, A., Liu, Y., Liu, Y., Wang, H., et al (2008) Overexpression of decorin induces apoptosis and cell growth arrest in cultured rat mesangial cells in vitro. Nephrology (Carlton) 13, 607–615.CrossRefGoogle Scholar
  94. 94.
    Schaefer, L., Beck, K. F., Raslik, I., Walpen, S., Mihalik, D., Micegova, M., et al (2003) Biglycan, a nitric oxide-regulated gene, affects adhesion, growth, and survival of mesangial cells. J Biol Chem. 278, 26227–26237.PubMedCrossRefGoogle Scholar
  95. 95.
    Lin, X., Wei, G., Shi, Z., Dryer, L., Esko, J. D., Wells, D. E., et al (2000) Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol. 224, 299–311.PubMedCrossRefGoogle Scholar
  96. 96.
    Chen, S., Wassenhove-McCarthy, D. J., Yamaguchi, Y., Holzman, L. B., van Kuppevelt, T. H., Jenniskens, G. J., et al (2008) Loss of heparan sulfate glycosaminoglycan assembly in podocytes does not lead to proteinuria. Kidney Int. 74, 289–299.PubMedCrossRefGoogle Scholar
  97. 97.
    Chen, S., Wassenhove-McCarthy, D., Yamaguchi, Y., Holzman, L., van Kuppevelt, T. H., Orr, A. W., et al. (2010) Podocytes require the engagement of cell surface heparan sulfate proteoglycans for adhesion to extracellular matrices. Kidney Int 78, 1088–1099.PubMedCrossRefGoogle Scholar
  98. 98.
    Roberts, I. S. D. and Gleadle, J. M. (2008) Familial nephropathy and multiple exostoses with exostosin-1 (EXT1) gene mutation. J Am Soc Nephrol. 19, 450–453.PubMedCrossRefGoogle Scholar
  99. 99.
    Condac, E., Silasi-Mansat, R., Kosanke, S., Schoeb, T., Towner, R., Lupu, F., et al (2007) Polycystic disease caused by deficiency in xylosyltransferase 2, an initiating enzyme of glycosaminoglycan biosynthesis. Proc Natl Acad Sci USA 104, 9416–9421.PubMedCrossRefGoogle Scholar
  100. 100.
    Hendig, D., Tarnow, L., Kuhn, J., Kleesiek, K., and Götting, C. (2008) Identification of a xylosyltransferase II gene haplotype marker for diabetic nephropathy in type 1 diabetes. Clin Chim Acta 398, 90–94.PubMedCrossRefGoogle Scholar
  101. 101.
    Li, J. P., Gong, F., Hagner-McWhirter, A., Forsberg, E., Abrink, M., Kisilevsky, R., et al (2003) Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J Biol Chem. 278, 28363–28366.PubMedCrossRefGoogle Scholar
  102. 102.
    Jia, J., Maccarana, M., Zhang, X., Bespalov, M., Lindahl, U., and Li, J. P. (2009) Lack of L-iduronic acid in heparan sulfate affects interaction with growth factors and cell signaling. J Biol Chem. 284, 15942–15950.PubMedCrossRefGoogle Scholar
  103. 103.
    Bullock, S. L., Fletcher, J. M., Beddington, R. S., and Wilson, V. A. (1998) Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes and Dev. 12, 1894–1906.PubMedCrossRefGoogle Scholar
  104. 104.
    Merry, C. L., Bullock, S. L., Swan, D. C., Backen, A. C., Lyon, M., Beddington, R. S., et al (2001) The molecular phenotype of heparan sulfate in the Hs2st –/– mutant mouse. J Biol Chem. 276, 35429–35434.PubMedCrossRefGoogle Scholar
  105. 105.
    McLaughlin, D., Karlsson, F., Tian, N., Pratt, T., Bullock, S. L., Wilson, V. A., et al (2003) Specific modification of heparan sulphate is required for normal cerebral cortical development. Mech Dev. 120, 1481–1488.PubMedCrossRefGoogle Scholar
  106. 106.
    Shah, M. M., Sakurai, H., Sweeney, D. E., Gallegos, T. F., Bush, K. T., Esko, J. D., et al (2010) Hs2st mediated kidney mesenchyme induction regulates early ureteric bud branching. Dev Biol. 339, 354–365.PubMedCrossRefGoogle Scholar
  107. 107.
    Edge, A. S. B. and Spiro, R. G. (2000) A specific structural alteration in the heparan sulphate of human glomerular basement membrane in diabetes. Diabetologia 43, 1056–1059.PubMedCrossRefGoogle Scholar
  108. 108.
    Ratelade, J., Arrondel, C., Hamard, G., Garbay, S., Harvey, S., Biebuyck, N., et al (2010) A murine model of Denys-Drash syndrome reveals novel transcriptional targets of WT1 in podocytes. Hum Mol Genet. 19, 115.PubMedCrossRefGoogle Scholar
  109. 109.
    Langsdorf, A., Schumacher, V., Shi, X., Tran, T., Zaia, J., Jain, S., et al. (2011) Expression regulation and function of Sulfs in the spermatogonial stem cell niche. Glycobiology 21, 152–161.PubMedCrossRefGoogle Scholar
  110. 110.
    Holst, C. R., Bou-Reslan, H., Gore, B. B., Wong, K., Grant, D., Chalasani, S., et al (2007) Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival. PLoS One 2, e575.PubMedCrossRefGoogle Scholar
  111. 111.
    Lum, D. H., Tan, J., Rosen, S. D., and Werb, Z. (2007) Gene trap disruption of the mouse heparan sulfate 6-O-endosulfatase gene, Sulf2. Mol Cell Biol. 27, 678–688.PubMedCrossRefGoogle Scholar
  112. 112.
    Lamanna, W. C., Baldwin, R. J., Padva, M., Kalus, I., Ten Dam, G., van Kuppevelt, T. H., et al (2006) Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity. Biochem J. 400, 6373.PubMedCrossRefGoogle Scholar
  113. 113.
    Ai, X., Kitazawa, T., Do, A. T., Kusche-Gullberg, M., Labosky, P. A., and Emerson, C. P. Jr. (2007) SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development 134, 3327–3338.PubMedCrossRefGoogle Scholar
  114. 114.
    Schumacher V.A., Schlötzer-Schrehardt U., Karumanchi S.A., Shi X., Zaia J., Jeruschke S., et al. (2011) WT1-dependent sulfatase expression maintains the normal glomerular filtration barrier. J Am Soc Nephrol. 22, 1286–1296.Google Scholar
  115. 115.
    van den Hoven, M. J., Rops, A. L., Vlodavsky, I., Levidiotis, V., Berden, J. H., and van der Vlag, J. (2007) Heparanase in glomerular diseases. Kidney Int. 72, 543–548.PubMedCrossRefGoogle Scholar
  116. 116.
    Harvey, S. J. and Miner, J. H. (2008) Revisiting the glomerular charge barrier in the molecular era. Curr Opin Nephrol Hypertens. 17, 393–398.PubMedCrossRefGoogle Scholar
  117. 117.
    Li, J. P., Galvis, M. L., Gong, F., Zhang, X., Zcharia, E., Metzger, S., et al (2005) In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. Proc Natl Acad Sci. 102, 6473–6477.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.INSERM Avenir U983Hôpital Necker-Enfants MaladesParisFrance

Personalised recommendations