Proteoglycans pp 239-255 | Cite as

Heparan Sulfate Proteoglycans as Multifunctional Cell Regulators: Cell Surface Receptors

  • Jin-ping LiEmail author
  • Dorothe Spillmann
Part of the Methods in Molecular Biology book series (MIMB, volume 836)


Proteoglycans are macromolecules expressed on the cell surfaces and in the extracellular matrix of most animal tissues (Annu Rev Biochem 68:729–777, 1999; Int Rev Cell Mol Biol 276:105–159, 2009). Heparan sulfate proteoglycans (HSPGs) are essential for animal development and homeostasis, and are involved in various pathological processes. The functions of HSPGs are largely exerted through interaction of the heparan sulfate (HS) side chains with different types of ligands, including diverse molecules such as cytokines, enzymes, and pathogens. One of the important roles of cell surface HSPGs is to mediate cytokine-induced cell signaling through interaction with growth factors (GFs) and their cognate receptors. A selective dependence of GFs for different structural features of HS has been demonstrated by applying cell models that are mutated variously in HS structure due to deficiency in enzymes involved in the biosynthesis of HS chains.

Key words

Proteoglycan Heparan sulfate Heparin Cytokine Cell surface receptor HS mutant cell lines 



The authors are supported by grants from the Swedish Research Council (K2009-67X-21128-01-3), the Swedish Cancer Found-ation (09 0717 and 09 0762), and Polysackaridforskning AB (Uppsala).


  1. 1.
    Bernfield, M., Götte, M., Park, P. W., Reizes, O., Fitzgerald, M. L., and Lincecum, J., and Zako, M. (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68, 729–777.PubMedCrossRefGoogle Scholar
  2. 2.
    Lindahl, U. and Li, J.-P. (2009) Interactions between heparan sulfate and proteins-design and functional implications. Int Rev Cell Mol Biol 276, 105–159.PubMedCrossRefGoogle Scholar
  3. 3.
    Jastrebova, N., Vanwildemeersch, M., Lindahl, U., and Spillmann, D. (2010) Heparan sulfate domain organization and sulfation modulate FGF2 induced cell signaling. J Biol Chem 27, 26842–26851.CrossRefGoogle Scholar
  4. 4.
    Rapraeger, A. C. (1995) In the clutches of proteoglycans: how does heparan sulfate regulate FGF binding? Chem Biol. 2, 645–649.PubMedCrossRefGoogle Scholar
  5. 5.
    Yayon, A., Klagsbrun, M., Esko, J. D., et al (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64, 841–848.PubMedCrossRefGoogle Scholar
  6. 6.
    Mohammadi, M., Olsen, S. K., and Ibrahimi, O. A. (2005) Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16, 107–137.PubMedCrossRefGoogle Scholar
  7. 7.
    Schlessinger, J., Plotnikov, A. N., Ibrahimi, O. A., Eliseenkova, A. V., Yeh, B. K., Yayon, A., et al (2000) Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6, 743–750.PubMedCrossRefGoogle Scholar
  8. 8.
    Pellegrini, L., Burke, D. F., Von Delft, F., Mulloy, B., and Blundell, T. L. (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407, 1029–1034.PubMedCrossRefGoogle Scholar
  9. 9.
    Takazaki, R., Shishido, Y., Iwamoto, R., and Mekada, E. (2004) Suppression of the biological activities of the epidermal growth factor (EGF)-like domain by the heparin-binding domain of heparin-binding EGF-like Growth Factor. J Biol Chem. 279, 47335–47343.PubMedCrossRefGoogle Scholar
  10. 10.
    Barnett, M. W., Fisher, C. E., Perona-Wright, G., and Davies, J. A. (2002) Signalling by glial cell line-derived neurotrophic factor (GDNF) requires heparan sulphate glycosaminoglycan. J Cell Sci. 115, 4495–4503.PubMedCrossRefGoogle Scholar
  11. 11.
    Davies, J. A., Yates, E. A., and Turnbull, J. E. (2003) Structural determinants of heparan sulphate modulation of GDNF signalling. Growth Factors 21, 109–119.PubMedCrossRefGoogle Scholar
  12. 12.
    Kemp, L. E., Mulloy, B., and Gherardi, E. (2006) Signalling by HGF/SF and Met: the role of heparan sulphate co-receptors. Biochem Soc Trans. 34, 414–417.PubMedCrossRefGoogle Scholar
  13. 13.
    Lustig, F., Hoebeke, J., Östergren-Lunden, G., Velge-Roussel, F., Bondjers, G., Olsson, U., et al (1996) Alternative splicing determines the binding of platelet-derived growth factor (PDGF-AA) to glycosaminoglycans. Biochemistry 17, 12077–12085.CrossRefGoogle Scholar
  14. 14.
    Carrasco, H., Olivares, G. H., Faunes, F., Oliva, C., and Larraín, J. (2005) Heparan sulfate proteoglycans exert positive and negative effects in Shh activity. J Cell Biochem 96, 831–838.PubMedCrossRefGoogle Scholar
  15. 15.
    Ito, N. and Claesson-Welsh, L. (1999) Dual effects of heparin on VEGF binding to VEGF receptor-1 and transduction of biological responses. Angiogenesis 3, 159–166.PubMedCrossRefGoogle Scholar
  16. 16.
    Selleck, S. B. (2006) Signaling from across the way: transactivation of VEGF receptors by HSPGs. Mol Cell 22, 431–432.PubMedCrossRefGoogle Scholar
  17. 17.
    Rider, C. C. (2006) Heparin/heparan sulphate binding in the TGF-beta cytokine superfamily. Biochem Soc Trans 34, 458–460.PubMedCrossRefGoogle Scholar
  18. 18.
    Tsuda, M., Kamimura, K., Nakato, H., Archer, M., Staatz, W., Fox, B., Humphrey, M., et al (1999) The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276–280.PubMedCrossRefGoogle Scholar
  19. 19.
    Kikuchi, A., Yamamoto, H., and Sato, A. (2009) Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol 19, 119–129.PubMedCrossRefGoogle Scholar
  20. 20.
    Cuellar, K., Chuong, H., Hubbell, S. M., and Hinsdale, M. E. (2007) Biosynthesis of chondroitin and heparan sulfate in Chinese hamster ovary cells depends on xylosyltransferase II. J Biol Chem. 282, 5195–5200.PubMedCrossRefGoogle Scholar
  21. 21.
    Fransson, L-Å., Silverberg, I., and Carlstedt, I. (1985) Structure of the heparan sulfate-protein linkage region. Demonstration of the sequence galactosyl-galactosyl-xylose-2-phosphate. J Biol Chem. 260, 14722–14726.PubMedGoogle Scholar
  22. 22.
    Lin, X., Wei, G., Shi, Z., Dryer, L., Esko, J. D., Wells, D. E., and Matzuk, M. M. (2000) Disruption of gastrulation and heparan sulfate biosynthesis in EXT1- deficient mice. Dev Biol. 224, 299–311.PubMedCrossRefGoogle Scholar
  23. 23.
    Stickens, D., Zak, B. M., Rougier, N., Esko, J. D., and Werb, Z. (2005) Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development 132, 5055–5068.PubMedCrossRefGoogle Scholar
  24. 24.
    Ringvall, M., Ledin, J., Holmborn, K., van Kuppevelt, T., Ellin, F., Eriksson, I., et al (2000) Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deace-tylase/N-sulfotransferase-1. J Biol Chem. 275, 25926–25930.PubMedCrossRefGoogle Scholar
  25. 25.
    Forsberg, E., Pejler, G., Ringvall, M., Lunderius, C., Tomasini-Johansson, B., Kusche-Gullberg, M., et al (1999) Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773–776.PubMedCrossRefGoogle Scholar
  26. 26.
    Pallerla, S. R., Lawrence, R., Lewejohann, L., Pan, Y., Fischer, T., Schlomann, U., et al (2008) Altered heparan sulfate structure in mice with deleted NDST3 gene function. J Biol Chem 283, 16885–16894.PubMedCrossRefGoogle Scholar
  27. 27.
    Li, J. P., Gong, F., Hagner-Mcwhirter, Å., Forsberg, E., Abrink, M., Kisilevsky, R., et al (2003) Targeted disruption of murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J Biol Chem. 278, 28363–28366.PubMedCrossRefGoogle Scholar
  28. 28.
    Jia, J., Maccarana, M., Zhang, X., Bespalov, M., Lindahl, U., and Li, J. P. (2009) Lack of L-iduronic acid in heparan sulfate affects interaction with growth factors and cell signaling. J Biol Chem. 284, 15942–15950.PubMedCrossRefGoogle Scholar
  29. 29.
    Bullock, S. L., Fletcher, J. M., Beddington, R. S., and Wilson, V. A. (1998) Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 12, 1894–1906.PubMedCrossRefGoogle Scholar
  30. 30.
    Smeds, E., Habuchi, H., Do, A. T., Habuchi, H., Kimata, K., Lindahl, U., and Kusche-Gullberg, M. (2003) Substrate specificities of mouse heparan sulphate glucosaminyl 6-O-sulphotransferases. Biochem J. 372: 371–380.PubMedCrossRefGoogle Scholar
  31. 31.
    Habuchi, H., Nagai, N., Sugaya, N., Atsumi, F., Stevens, R. L., and Kimata, K. (2007) Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality. J Biol Chem. 282, 15578–15588.PubMedCrossRefGoogle Scholar
  32. 32.
    Ai, X., Kitazawa, T., Do, A. T., Kusche-Gullberg, M., Labosky, P. A., and Emerson, C. P. Jr. (2007) SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development 134, 3327–3338.PubMedCrossRefGoogle Scholar
  33. 33.
    Lum, D. H., Tan, J., Rosen, S. D., and Werb, Z. (2007) Gene trap disruption of the mouse heparan sulfate 6-O-endosulfatase gene, Sulf2. Mol Cell Biol. 27, 678–688.PubMedCrossRefGoogle Scholar
  34. 34.
    Rosen, S. D. and Lemjabbar-Alaoui, H. (2010) Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate. Expert Opin Ther Targets 14, 935–949.PubMedCrossRefGoogle Scholar
  35. 35.
    Zcharia, E., Metzger, S., Chajek-Shaul, T., Aingorn, H., Elkin, M., Friedmann, Y., et al (2004) Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J 18, 252–263.PubMedCrossRefGoogle Scholar
  36. 36.
    Escobar Galvis, M. L., Jia, J., Zhang, X., Jastrebova, N., Spillmann, D., Gottfridsson, E., et al (2007) Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate. Nat Chem Biol 3, 773–778.PubMedCrossRefGoogle Scholar
  37. 37.
    Zcharia, E., Jia, J., Zhang, X., Baraz, L., Lindahl, U., Peretz, T., et al (2009) Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS ONE 4, e5181.PubMedCrossRefGoogle Scholar
  38. 38.
    Baldwin, R. J., Ten Dam, G. B., Van Kuppevelt, T. H., et al (2008) A developmentally regulated heparan sulfate epitope defines a subpopulation with increased blood potential during mesodermal differentiation. Stem Cells 26, 3108–3118.PubMedCrossRefGoogle Scholar
  39. 39.
    Kraushaar, D. C., Yamaguchi, Y., and Wang, L. (2010) Heparan sulfate is required for embryonic stem cells to exit from self-renewal. J Biol Chem. 285: 5907–5916.PubMedCrossRefGoogle Scholar
  40. 40.
    Lanner, F., Lee, K. L., Sohl, M., Holmborn, K., Yang, H., Wilbertz, J., et al (2010) Heparan sulfation-dependent fibroblast growth factor signaling maintains embryonic stem cells primed for differentiation in a heterogeneous state. Stem Cells 28, 191–200.PubMedGoogle Scholar
  41. 41.
    Sun, H. and Taneja, R. (2007) Analysis of transformation and tumorigenicity using mouse embryonic fibroblast cells. Methods Mol Biol. 383, 303–310.PubMedCrossRefGoogle Scholar
  42. 42.
    Yamada, S., Busse, M., Ueno, M., Kelly, O. G., Skarnes, W. C., Sugahara, K., and Kusche-Gullberg, M. (2004) Embryonic fibroblasts with a gene trap mutation in Ext1 produce short heparan sulfate chains. J Biol Chem. 279, 32134–32141.PubMedCrossRefGoogle Scholar
  43. 43.
    Osterholm, C., Barczyk, M. M., Busse, M., Grønning, M., Reed, R. K., and Kusche-Gullberg, M. (2009) Mutation in the heparan sulfate biosynthesis enzyme EXT1 influences growth factor signaling and fibroblast interactions with the extracellular matrix. J Biol Chem. 284, 34935–34943.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhu, W., Wang, L., Yang, Y., Jia, J., Fu, S., Feng, Y., et al (2010) Interaction of E2 glycoprotein with heparan sulfate is crucial for cellular infection of Sindbis virus. PLoS ONE 5, e9656.PubMedCrossRefGoogle Scholar
  45. 45.
    Abramsson, A., Kurup, S., Busse, M., Yamada, S., Lindblom, P., Schallmeiner, E., et al (2007) Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev. 21, 316–331.PubMedCrossRefGoogle Scholar
  46. 46.
    Merry, C. L. R., Bullock, S. L., Swan, D. C., Backen, A. C., Lyon, M., Beddington, R. S., et al (2001) The molecular phenotype of heparan sulfate in the Hs2st−/− mutant mouse. J Biol Chem. 276, 35429–35434.PubMedCrossRefGoogle Scholar
  47. 47.
    Sugaya, N., Habuchi, H., Nagai, N., Ashikari-Hada, S., and Kimata, K. (2008) 6-O-sulfation of heparan sulfate differentially regulates various fibroblast growth factor-dependent signalings in culture. J Biol Chem. 283, 10366–10376.PubMedCrossRefGoogle Scholar
  48. 48.
    Lamanna, W. C., Frese, M. A., Balleininger, M., and Dierks, T. (2008) Sulf loss influences N-, 2-O-, and 6-O-sulfation of multiple heparan sulfate proteoglycans and modulates fibroblast growth factor signaling. J Biol Chem. 283, 27724–27735.PubMedCrossRefGoogle Scholar
  49. 49.
    Esko, J. D., Stewart, T. E., and Taylor, W. H. (1985) Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc Natl Acad Sci USA 82, 3197–3201.PubMedCrossRefGoogle Scholar
  50. 50.
    Bai, X., Crawford, B., and Esko, J. D. (2001) Selection of glycosaminoglycan-deficient mutants. Methods Mol Biol. 171, 309–316.PubMedGoogle Scholar
  51. 51.
    Bakker, H., Oka, T., Ashikov, A., Yadav, A., Berger, M., Rana, N. A., et al (2009) Functional UDP-xylose transport across the endoplasmic reticulum/Golgi membrane in a Chinese hamster ovary cell mutant defective in UDP-xylose synthase. J Biol Chem. 284, 2576–2583.PubMedCrossRefGoogle Scholar
  52. 52.
    Lidholt, K., Weinke, J. L., Kiser, C. S., Lugemwa, F. N., Bame, K. J., Cheifetz, S., et al (1992) A single mutation affects both N-acetylglucosaminyltransferase and glucuron-osyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc Natl Acad Sci USA 89, 2267–2271.PubMedCrossRefGoogle Scholar
  53. 53.
    Bame, K. J. and Esko, J. D. (1989) Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J Biol Chem. 264, 8059–8065.PubMedGoogle Scholar
  54. 54.
    Bai, X. and Esko, J. D. (1996) An animal cell mutant defective in heparan sulfate hexuronic acid 2-O-sulfation. J Biol Chem. 271, 17711–17717.PubMedCrossRefGoogle Scholar
  55. 55.
    Bai, X., Crawford, B., and Esko, J. D. (2001) Selection of glycosaminoglycan-deficient mutants. Methods Mol Biol. 171, 309–316.PubMedGoogle Scholar
  56. 56.
    Friedl, A., Filla, M., and Rapraeger, A. C. (2001) Tissue-specific binding by FGF and FGF receptors to endogenous heparan sulfates. Methods Mol Biol. 171, 535–546.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden

Personalised recommendations