Skip to main content

Use of Proteomic Tools in Microbial Engineering for Biofuel Production

  • Protocol
  • First Online:
Microbial Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 834))

Abstract

The production of biofuels from renewable sources by microbial engineering has gained increased attention due to energy and environmental concerns. Butanol is one of the important gasoline-substitute fuels and can be produced by native microorganism Clostridium acetobutylicum. To develop a fundamental tool to understand C. acetobutylicum, a high resolution proteome reference map for this species has been established. To better understand the relationship between butanol tolerance and butanol yield, we performed a comparative proteomic analysis between the wild-type strain DSM 1731 and its mutant Rh8 at acidogenic and solventogenic phases, respectively. The 102 differentially expressed proteins that are mainly involved in protein folding, solvent formation, amino acid metabolism, protein synthesis, nucleotide metabolism, transport, and others were detected. Hierarchical clustering analysis revealed that over 70% of the 102 differentially expressed proteins in mutant Rh8 were either upregulated (e.g., chaperones and solvent formation related) or downregulated (e.g., amino acid metabolism and protein synthesis related) in both acidogenic and solventogenic phase, which, respectively, are only upregulated or downregulated in solventogenic phase in the wild-type strain.

These authors contributed equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephanopoulos, G. (2007). Challenges in engineering microbes for biofuels production. Science 315, 801–804.

    Article  PubMed  CAS  Google Scholar 

  2. Rude, M. A. and Schirmer, A. (2009). New microbial fuels: a biotech perspective. Curr Opin Microbiol 12, 274–281.

    Article  PubMed  CAS  Google Scholar 

  3. Lee, S. K., Chou, H., Ham, T. S., Lee, T. S. and Keasling, J. D. (2008). Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19, 556–563.

    Article  PubMed  CAS  Google Scholar 

  4. Jones, D. T. and Woods, D. R. (1986). Acetone-butanol fermentation revisited. Microbiol Rev 50, 484–524.

    PubMed  CAS  Google Scholar 

  5. Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J. and Jung, K. S. (2008). Fermentative butanol production by Clostridia. Biotechnol Bioeng 101, 209–228.

    Article  PubMed  CAS  Google Scholar 

  6. Ezeji, T. C., Qureshi, N. and Blaschek, H. P. (2007). Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18, 220–227.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, Y. P., Zhu, Y., Zhu, Y. and Li, Y. (2009). The importance of engineering physiological functionality into microbes. Trends Biotech 27, 664–672.

    Article  Google Scholar 

  8. Wackett, L. P. (2008). Biomass to fuels via microbial transformations. Curr Opin Chem Biol 12, 187–193.

    Article  PubMed  CAS  Google Scholar 

  9. Jia, K. Z., Zhang, Y. P. and Li, Y. (2010). Systematic engineering of microorganisms to improve alcohol tolerance. Eng Life Sci 10, 422–429.

    Article  CAS  Google Scholar 

  10. Yan, Y. and Liao, J. C. (2009). Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol 36, 471–479.

    Article  PubMed  CAS  Google Scholar 

  11. Mukhopadhyay, A., Redding, A. M., Rutherford, B. J. and Keasling, J. D. (2008). Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19, 228–234.

    Article  PubMed  CAS  Google Scholar 

  12. Mao, S. M., Luo, Y. A. M., Zhang, T. R., Li, J. S., Bao, G. A. H., Zhu, Y., Chen, Z. G., Zhang, Y. P., Li, Y. and Ma, Y. H. (2010). Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res 9, 3046–3061.

    Article  PubMed  CAS  Google Scholar 

  13. Elias, J. E. and Gygi, S. P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4, 207–214.

    Article  PubMed  CAS  Google Scholar 

  14. Wilkins, M. R., Appel, R. D., Van Eyk, J. E., Chung, M. C. M., Gorg, A., Hecker, M., Huber, L. A., Langen, H., Link, A. J., Paik, Y. K., Patterson, S. D., Pennington, S. R., Rabilloud, T., Simpson, R. J., Weiss, W. and Dunn, M. J. (2006). Guidelines for the next 10 years of proteomics. Proteomics 6, 4–8.

    Article  PubMed  CAS  Google Scholar 

  15. Trauger, S. A., Kalisak, E., Kalisiak, J., Morita, H., Weinberg, M. V., Menon, A. L., Poole, F. L., Adams, M. W. W. and Siuzdak, G. (2008). Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile. J Proteome Res 7, 1027–1035.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao, B., Yeo, C. C. and Poh, C. L. (2005). Proteome investigation of the global regulatory role of sigma 54 in response to gentisate induction in Pseudomonas alcaligenes NCIMB 9867. Proteomics 5, 1868–1876.

    Article  PubMed  CAS  Google Scholar 

  17. Dong, M., Yang, L. L., Williams, K., Fisher, S. J., Hall, S. C., Biggin, M. D., Jin, J. and Witkowska, H. E. (2008). A “Tagless” strategy for identification of stable protein complexes genome-wide by multidimensional orthogonal chromatographic separation and iTRAQ reagent tracking. J Proteome Res 7, 1836–1849.

    Article  PubMed  CAS  Google Scholar 

  18. GEHealthcare (2004). 2-D Electrophoresis principles and methods. pp. 10–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mao, S., Jia, K., Zhang, Y., Li, Y. (2012). Use of Proteomic Tools in Microbial Engineering for Biofuel Production. In: Cheng, Q. (eds) Microbial Metabolic Engineering. Methods in Molecular Biology, vol 834. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-483-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-483-4_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-482-7

  • Online ISBN: 978-1-61779-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics