Skip to main content

Preparation of Nucleosomes Containing a Specific H2A–H2A Cross-Link Forming a DNA-Constraining Loop Structure

  • Protocol
  • First Online:
Chromatin Remodeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 833))

  • 3161 Accesses

Abstract

ATP-dependent chromatin-remodeling complexes use the energy of ATP hydrolysis to alter nucleosome structure, increase the accessibility of trans-acting factors, and induce nucleosome movement on the nucleosomal DNA. Recent studies suggest that bulge propagation is a major component of the mechanism for SWI/SNF remodeling. We describe in detail a method to prepare a mononucleosomal substrate in which the two H2A N-terminal tails are cross-linked in an intranucleosomal fashion, forming a closed loop around the two superhelical winds of DNA. This substrate is useful for researchers who wish to test processes in which the DNA is transiently or permanently lifted off the histone surface, such as in the bulge propagation model. Our method allows assessment of the extent of cross-linking within the population of nucleosomes used in small-scale experiments, such as assays to test SWI/SNF-remodeling activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kornberg, R. D., and Lorch, Y. (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome, Cell 98, 285–294.

    Google Scholar 

  2. Jenuwein, T., and Allis, C. D. (2001) Translating the histone code, Science 293, 1074–1080.

    Google Scholar 

  3. Kingston, R. E., and Narlikar, G. J. (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity, Genes Dev 13, 2339–2352.

    Google Scholar 

  4. Gangaraju, V. K., and Bartholomew, B. (2007) Mechanisms of ATP dependent chromatin remodeling, Mutat Res 618, 3–17.

    Google Scholar 

  5. Liu, N., Balliano, A., and Hayes, J. J. (2010) Mechanism(s) of SWI/SNF-Induced Nucleo­some Mobilization, Chembiochem.

    Google Scholar 

  6. Cairns, B. R. (2007) Chromatin remodeling: insights and intrigue from single-molecule studies, Nat Struct Mol Biol 14, 989–996.

    Google Scholar 

  7. Côté, J., Quinn, J., Workman, J. L., and Peterson, C. L. (1994) Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex, Science 265, 53–60.

    Google Scholar 

  8. Peterson, C. L., and Herskowitz, I. (1992) Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription, Cell 68, 573–583.

    Google Scholar 

  9. Schnitzler, G., Sif, S., and Kingston, R. E. (1998) Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state, Cell 94, 17–27.

    Google Scholar 

  10. Flaus, A., Martin, D. M., Barton, G. J., and Owen-Hughes, T. (2006) Identification of multiple distinct Snf2 subfamilies with conserved structural motifs, Nucleic Acids Res 34, 2887–2905.

    Google Scholar 

  11. Havas, K., Flaus, A., Phelan, M., Kingston, R., Wade, P. A., Lilley, D. M., and Owen-Hughes, T. (2000) Generation of superhelical torsion by ATP-dependent chromatin remodeling activities, Cell 103, 1133–1142.

    Google Scholar 

  12. Saha, A., Wittmeyer, J., and Cairns, B. R. (2002) Chromatin remodeling by RSC involves ATP-dependent DNA translocation, Genes Dev 16, 2120–2134.

    Google Scholar 

  13. Gavin, I., Horn, P. J., and Peterson, C. L. (2001) SWI/SNF chromatin remodeling requires changes in DNA topology, Mol Cell 7, 97–104.

    Google Scholar 

  14. van Holde, K., and Yager, T. (2003) Models for chromatin remodeling: a critical comparison, Biochem Cell Biol 81, 169–172.

    Google Scholar 

  15. Richmond, T. J., and Davey, C. A. (2003) The structure of DNA in the nucleosome core, Nature 423, 145–150.

    Google Scholar 

  16. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature 389, 251–260.

    Google Scholar 

  17. Aoyagi, S., Wade, P. A., and Hayes, J. J. (2003) Nucleosome sliding induced by the xMi-2 complex does not occur exclusively via a simple twist-diffusion mechanism, J Biol Chem 278, 30562–30568.

    Google Scholar 

  18. Aoyagi, S., and Hayes, J. J. (2002) hSWI/SNF-catalyzed nucleosome sliding does not occur solely via a twist-diffusion mechanism, Mol Cell Biol 22, 7484–7490.

    Google Scholar 

  19. Langst, G., and Becker, P. B. (2001) Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors, J Cell Sci 114, 2561–2568.

    Google Scholar 

  20. Langst, G., and Becker, P. B. (2001) ISWI induces nucleosome sliding on nicked DNA, Mol Cell 8, 1085–1092.

    Google Scholar 

  21. Zhang, Y., Smith, C. L., Saha, A., Grill, S. W., Mihardja, S., Smith, S. B., Cairns, B. R., Peterson, C. L., and Bustamante, C. (2006) DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC, Mol Cell 24, 559–568.

    Google Scholar 

  22. Zofall, M., Persinger, J., Kassabov, S. R., and Bartholomew, B. (2006) Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome, Nat Struct Mol Biol 13, 339–346.

    Google Scholar 

  23. Yang, Z., Zheng, C., and Hayes, J. J. (2007) The core histone tail domains contribute to sequence-dependent nucleosome positioning, J Biol Chem 282, 7930–7938.

    Google Scholar 

  24. Smith, C. L., Horowitz-Scherer, R., Flanagan, J. F., Woodcock, C. L., and Peterson, C. L. (2003) Structural analysis of the yeast SWI/SNF chromatin remodeling complex, Nat Struct Biol 10, 141–145.

    Google Scholar 

  25. Wang, X., and Hayes, J. J. (2007) Site-specific binding affinities within the H2B tail domain indicate specific effects of lysine acetylation, J Biol Chem 282, 32867–32876.

    Google Scholar 

  26. Hayes, J. J., and Lee, K. M. (1997) In vitro reconstitution and analysis of mononucleo­somes containing defined DNAs and proteins, Methods 12, 2–9.

    Google Scholar 

  27. Lee, K. M., and Hayes, J. J. (1997) The N-terminal tail of histone H2A binds to two distinct sites within the nucleosome core, Proc Natl Acad Sci USA 94, 8959–8964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Hayes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liu, N., Hayes, J.J. (2012). Preparation of Nucleosomes Containing a Specific H2A–H2A Cross-Link Forming a DNA-Constraining Loop Structure. In: Morse, R. (eds) Chromatin Remodeling. Methods in Molecular Biology, vol 833. Humana Press. https://doi.org/10.1007/978-1-61779-477-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-477-3_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-476-6

  • Online ISBN: 978-1-61779-477-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics