Skip to main content

Structural Insights into Functional Modes of Proteins Involved in Ubiquitin Family Pathways

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 832))

Abstract

The conjugation of ubiquitin and related modifiers to selected proteins represents a general mechanism to alter the function of these protein targets, thereby increasing the complexity of the cellular proteome. Ubiquitylation is catalyzed by a hierarchical enzyme cascade consisting of ubiquitin activating, ubiquitin conjugating, and ubiquitin ligating enzymes, and their combined action results in a diverse topology of ubiquitin-linkages on the modified proteins. Counteracting this machinery are various deubiquitylating enzymes while ubiquitin recognition in all its facets is accomplished by numerous ubiquitin-binding elements. In the following chapter, we attempt to provide an overview on enzymes involved in ubiquitylation as well as the removal of ubiquitin and proteins involved in the recognition and binding of ubiquitin from a structural biologist’s perspective.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ciechanover A (2005) Intracellular protein degradation: from a vague idea, through the lysosome and the ubiquitin-proteasome system, and onto human diseases and drug targeting (Nobel lecture). Angew Chem Int Ed Engl 44:5944–5967.

    Article  PubMed  CAS  Google Scholar 

  2. Herrmann J, Lerman LO, Lerman A (2007) Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res 100:1276–1291.

    Article  PubMed  CAS  Google Scholar 

  3. Hershko A (2005) The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture). Angew Chem Int Ed Engl 44:5932–5943.

    Article  PubMed  CAS  Google Scholar 

  4. Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180.

    Article  PubMed  CAS  Google Scholar 

  5. Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72.

    Article  PubMed  CAS  Google Scholar 

  6. Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Rep 9:536–542.

    Article  PubMed  CAS  Google Scholar 

  7. Haglund K, Dikic I (2005) Ubiquitylation and cell signaling. Embo J 24:3353–3359.

    Article  PubMed  CAS  Google Scholar 

  8. Vijay-Kumar S, Bugg CE, Wilkinson KD et al (1987) Comparison of the three-dimensional structures of human, yeast, and oat ubiquitin. J Biol Chem 262:6396–6399.

    PubMed  CAS  Google Scholar 

  9. Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194:531–544.

    Article  PubMed  CAS  Google Scholar 

  10. Winget JM, Mayor T (2010) The diversity of ubiquitin recognition: hot spots and varied specificity. Mol Cell 38:627–635.

    Article  PubMed  CAS  Google Scholar 

  11. Lange OF, Lakomek NA, Fares C et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475.

    Article  PubMed  CAS  Google Scholar 

  12. Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429.

    Article  PubMed  CAS  Google Scholar 

  13. Hartmann-Petersen R, Gordon C (2004) Integral UBL domain proteins: a family of proteasome interacting proteins. Semin Cell Dev Biol 15:247–259.

    Article  PubMed  CAS  Google Scholar 

  14. Burroughs AM, Iyer LM, Aravind L (2009) Natural history of the E1-like superfamily: implication for adenylation, sulfur transfer, and ubiquitin conjugation. Proteins 75:895–910.

    Article  PubMed  CAS  Google Scholar 

  15. Burns KE, Liu WT, Boshoff HI et al (2009) Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J Biol Chem 284:3069–3075.

    Article  PubMed  CAS  Google Scholar 

  16. Pearce MJ, Mintseris J, Ferreyra J et al (2008) Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322:1104–1107.

    Article  PubMed  CAS  Google Scholar 

  17. Gallastegui N, Groll M (2010) The 26S proteasome: assembly and function of a destructive machine. Trends Biochem Sci 35:634–642.

    Article  PubMed  CAS  Google Scholar 

  18. Peng J, Schwartz D, Elias JE et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926.

    Article  PubMed  CAS  Google Scholar 

  19. Guedat P, Colland F (2007) Patented small molecule inhibitors in the ubiquitin proteasome system. BMC Biochem 8 Suppl 1:S14.

    Google Scholar 

  20. Hoeller D, Dikic I (2009) Targeting the ubiquitin system in cancer therapy. Nature 458:438–444.

    Article  PubMed  CAS  Google Scholar 

  21. Petroski MD (2008) The ubiquitin system, disease, and drug discovery. BMC Biochem 9 Suppl 1:S7.

    Google Scholar 

  22. Dikic I, Wakatsuki S, Walters KJ (2009) Ubiquitin-binding domains - from structures to functions. Nature reviews 10:659–671.

    PubMed  CAS  Google Scholar 

  23. Hurley JH, Lee S, Prag G (2006) Ubiquitin-binding domains. The Biochemical journal 399:361–372.

    Article  PubMed  CAS  Google Scholar 

  24. Harper JW, Schulman BA (2006) Structural complexity in ubiquitin recognition. Cell 124:1133–1136.

    Article  PubMed  CAS  Google Scholar 

  25. Bomar MG, Pai MT, Tzeng SR et al (2007) Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase eta. EMBO Rep 8:247–251.

    Article  PubMed  CAS  Google Scholar 

  26. Hirano S, Kawasaki M, Ura H et al (2006) Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nat Struct Mol Biol 13:272–277.

    Article  PubMed  CAS  Google Scholar 

  27. Penengo L, Mapelli M, Murachelli AG et al (2006) Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell 124:1183–1195.

    Article  PubMed  CAS  Google Scholar 

  28. Swanson KA, Kang RS, Stamenova SD et al (2003) Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. Embo J 22:4597–4606.

    Article  PubMed  CAS  Google Scholar 

  29. Wang Q, Young P, Walters KJ (2005) Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J Mol Biol 348:727–739.

    Article  PubMed  CAS  Google Scholar 

  30. Ohno A, Jee J, Fujiwara K et al (2005) Structure of the UBA domain of Dsk2p in complex with ubiquitin molecular determinants for ubiquitin recognition. Structure 13:521–532.

    Article  PubMed  CAS  Google Scholar 

  31. Kang RS, Daniels CM, Francis SA et al (2003) Solution structure of a CUE-ubiquitin complex reveals a conserved mode of ubiquitin binding. Cell 113:621–630.

    Article  PubMed  CAS  Google Scholar 

  32. Alam SL, Sun J, Payne M et al (2004) Ubiquitin interactions of NZF zinc fingers. Embo J 23:1411–1421.

    Article  PubMed  CAS  Google Scholar 

  33. Reyes-Turcu FE, Horton JR, Mullally JE et al (2006) The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124:1197–1208.

    Article  PubMed  CAS  Google Scholar 

  34. Husnjak K, Elsasser S, Zhang N et al (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481–488.

    Article  PubMed  CAS  Google Scholar 

  35. Schreiner P, Chen X, Husnjak K et al (2008) Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453:548–552.

    Article  PubMed  CAS  Google Scholar 

  36. Komander D (2009) The emerging complexity of protein ubiquitination. Biochem Soc Trans 37:937–953.

    Article  PubMed  CAS  Google Scholar 

  37. Varadan R, Assfalg M, Raasi S et al (2005) Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain. Mol Cell 18:687–698.

    Article  PubMed  CAS  Google Scholar 

  38. Sato Y, Yoshikawa A, Yamagata A et al (2008) Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455:358–362.

    Article  PubMed  CAS  Google Scholar 

  39. Sato Y, Yoshikawa A, Mimura H et al (2009) Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J 28:2461–2468.

    Article  PubMed  CAS  Google Scholar 

  40. Sims JJ, Cohen RE (2009) Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol Cell 33:775–783.

    Article  PubMed  CAS  Google Scholar 

  41. Rahighi S, Ikeda F, Kawasaki M et al (2009) Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136:1098–1109.

    Article  PubMed  CAS  Google Scholar 

  42. Walters KJ, Lech PJ, Goh AM et al (2003) DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a. Proc Natl Acad Sci USA 100:12694–12699.

    Article  PubMed  CAS  Google Scholar 

  43. Schmidtke G, Kalveram B, Weber E et al (2006) The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10. J Biol Chem 281:20045–20054.

    Article  PubMed  CAS  Google Scholar 

  44. Hecker CM, Rabiller M, Haglund K et al (2006) Specification of SUMO1- and SUMO2-interac-ting motifs. J Biol Chem 281:16117–16127.

    Article  PubMed  CAS  Google Scholar 

  45. Knipscheer P, Flotho A, Klug H et al (2008) Ubc9 sumoylation regulates SUMO target discrimination. Mol Cell 31:371–382.

    Article  PubMed  CAS  Google Scholar 

  46. Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145.

    Article  PubMed  CAS  Google Scholar 

  47. Stebbins CE, Kaelin WG, Jr., Pavletich NP (1999) Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284:455–461.

    Article  PubMed  CAS  Google Scholar 

  48. Buchberger A, Howard MJ, Proctor M, Bycroft M (2001) The UBX domain: a widespread ubiquitin-like module. J Mol Biol 307:17–24.

    Article  PubMed  CAS  Google Scholar 

  49. Schuberth C, Buchberger A (2008) UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97. Cell Mol Life Sci 65:2360–2371.

    Article  PubMed  CAS  Google Scholar 

  50. Grabbe C, Dikic I (2009) Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chem Rev 109:1481–1494.

    Article  PubMed  CAS  Google Scholar 

  51. Elsasser S, Gali RR, Schwickart M et al (2002) Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4:725–730.

    Article  PubMed  CAS  Google Scholar 

  52. Matiuhin Y, Kirkpatrick DS, Ziv I et al (2008) Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol Cell 32:415–425.

    Article  PubMed  CAS  Google Scholar 

  53. Richly H, Rape M, Braun S et al (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73–84.

    Article  PubMed  CAS  Google Scholar 

  54. Cummins JM, Rago C, Kohli M et al (2004) Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428:1 p following 486.

    Google Scholar 

  55. Hanzelmann P, Stingele J, Hofmann K et al (2010) The yeast E4 ubiquitin ligase Ufd2 interacts with the ubiquitin-like domains of Rad23 and Dsk2 via a novel and distinct ubiquitin-like binding domain. J Biol Chem 285:20390–20398.

    Article  PubMed  CAS  Google Scholar 

  56. Park S, Isaacson R, Kim HT et al (2005) Ufd1 exhibits the AAA-ATPase fold with two distinct ubiquitin interaction sites. Structure 13:995–1005.

    Article  PubMed  CAS  Google Scholar 

  57. Dreveny I, Kondo H, Uchiyama K et al (2004) Structural basis of the interaction between the AAA ATPase p97/VCP and its adaptor protein p47. Embo J 23:1030–1039.

    Article  PubMed  CAS  Google Scholar 

  58. Isaacson RL, Pye VE, Simpson P et al (2007) Detailed structural insights into the p97-Npl4-Ufd1 interface. J Biol Chem 282:21361–21369.

    Article  PubMed  CAS  Google Scholar 

  59. Haas AL, Rose IA (1982) The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. J Biol Chem 257:10329–10337.

    CAS  Google Scholar 

  60. Haas AL, Warms JV, Hershko A, Rose IA (1982) Ubiquitin-activating enzyme. Mecha-nism and role in protein-ubiquitin conjugation. J Biol Chem 257:2543–2548.

    CAS  Google Scholar 

  61. Lake MW, Wuebbens MM, Rajagopalan KV, Schindelin H (2001) Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 414:325–329.

    Article  PubMed  CAS  Google Scholar 

  62. Lee I, Schindelin H (2008) Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134:268–278.

    Article  PubMed  CAS  Google Scholar 

  63. Lois LM, Lima CD (2005) Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. Embo J 24:439–451.

    Article  PubMed  CAS  Google Scholar 

  64. Walden H, Podgorski MS, Huang DT et al (2003) The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol Cell 12:1427–1437.

    Article  PubMed  CAS  Google Scholar 

  65. Huang DT, Hunt HW, Zhuang M et al (2007) Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity. Nature 445:394–398.

    Article  PubMed  CAS  Google Scholar 

  66. Olsen SK, Capili AD, Lu X et al (2010) Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature 463:906–912.

    Article  PubMed  CAS  Google Scholar 

  67. Wang J, Hu W, Cai S et al (2007) The intrinsic affinity between E2 and the Cys domain of E1 in ubiquitin-like modifications. Mol Cell 27:228–237.

    Article  PubMed  CAS  Google Scholar 

  68. Eletr ZM, Huang DT, Duda DM et al (2005) E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat Struct Mol Biol 12:933–934.

    Article  PubMed  CAS  Google Scholar 

  69. Eddins MJ, Carlile CM, Gomez KM et al (2006) Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat Struct Mol Biol 13:915–920.

    Article  PubMed  CAS  Google Scholar 

  70. VanDemark AP, Hofmann RM, Tsui C et al (2001) Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105:711–720.

    Article  PubMed  CAS  Google Scholar 

  71. van Wijk SJ, Timmers HT (2010) The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J 24:981–993.

    Article  PubMed  CAS  Google Scholar 

  72. Jentsch S (1992) The ubiquitin-conjugation system. Annu Rev Genet 26:179–207.

    Article  PubMed  CAS  Google Scholar 

  73. Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nature reviews 10:755–764.

    Article  PubMed  CAS  Google Scholar 

  74. Cook WJ, Jeffrey LC, Sullivan ML, Vierstra RD (1992) Three-dimensional structure of a ubiquitin-conjugating enzyme (E2). J Biol Chem 267:15116–15121.

    PubMed  CAS  Google Scholar 

  75. Cook WJ, Martin PD, Edwards BF et al (1997) Crystal structure of a class I ubiquitin conjugating enzyme (Ubc7) from Saccharomyces cerevisiae at 2.9 angstroms resolution. Biochemistry 36:1621–1627.

    Article  PubMed  CAS  Google Scholar 

  76. Huang DT, Walden H, Duda D, Schulman BA (2004) Ubiquitin-like protein activation. Oncogene 23:1958–1971.

    Article  PubMed  CAS  Google Scholar 

  77. Summers MK, Pan B, Mukhyala K, Jackson PK (2008) The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol Cell 31:544–556.

    Article  PubMed  CAS  Google Scholar 

  78. Pickart CM (2001) Mechanisms underlying ubiquitination. Annual review of biochemistry 70:503–533.

    Article  PubMed  CAS  Google Scholar 

  79. Hamilton KS, Ellison MJ, Barber KR et al (2001) Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure 9:897–904.

    Article  PubMed  CAS  Google Scholar 

  80. Pruneda JN, Stoll KE, Bolton LJ et al (2011) Ubiquitin in Motion: Structural studies of the E2  ∼  Ub conjugate. Biochemistry 50:1624–1633.

    Google Scholar 

  81. Sakata E, Satoh T, Yamamoto S et al (2010) Crystal structure of UbcH5b  ∼  ubiquitin intermediate: insight into the formation of the self-assembled E2  ∼  Ub conjugates. Structure 18:138–147.

    Article  PubMed  CAS  Google Scholar 

  82. Wang J, Taherbhoy AM, Hunt HW et al (2010) Crystal Structure of UBA2-Ubc9: Insights into E1-E2 Interactions in Sumo Pathways. PLoS One 5:e15805.

    Article  PubMed  CAS  Google Scholar 

  83. Li W, Bengtson MH, Ulbrich A et al (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One 3:e1487.

    Article  PubMed  CAS  Google Scholar 

  84. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505.

    Article  PubMed  CAS  Google Scholar 

  85. Huibregtse JM, Scheffner M, Howley PM (1991) A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. Embo J 10:4129–4135.

    PubMed  CAS  Google Scholar 

  86. Huibregtse JM, Scheffner M, Howley PM (1994) E6-AP directs the HPV E6-dependent inactivation of p53 and is representative of a family of structurally and functionally related proteins. Cold Spring Harbor symposia on quantitative biology 59:237–245.

    Article  PubMed  CAS  Google Scholar 

  87. Huibregtse JM, Scheffner M, Beaudenon S, Howley PM (1995) A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 92:5249.

    Google Scholar 

  88. Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83.

    Article  PubMed  CAS  Google Scholar 

  89. Huang L, Kinnucan E, Wang G et al (1999) Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286:1321–1326.

    Article  PubMed  CAS  Google Scholar 

  90. Laine A, Ronai Z (2007) Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene 26:1477–1483.

    Article  PubMed  CAS  Google Scholar 

  91. Verdecia MA, Joazeiro CA, Wells NJ et al (2003) Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell 11:249–259.

    Article  PubMed  CAS  Google Scholar 

  92. Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nature reviews 10:398–409.

    Article  PubMed  CAS  Google Scholar 

  93. Kamadurai HB, Souphron J, Scott DC et al (2009) Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. Mol Cell 36:1095–1102.

    Article  PubMed  CAS  Google Scholar 

  94. Lorick KL, Jensen JP, Fang S et al (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96:11364–11369.

    Article  PubMed  CAS  Google Scholar 

  95. Joazeiro CA, Wing SS, Huang H et al (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286:309–312.

    Article  PubMed  CAS  Google Scholar 

  96. Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteine-rich sequence motif. Cell 64:483–484.

    Article  PubMed  CAS  Google Scholar 

  97. Zheng N, Schulman BA, Song L et al (2002) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–709.

    Article  PubMed  CAS  Google Scholar 

  98. Kapitsinou PP, Haase VH (2008) The VHL tumor suppressor and HIF: insights from genetic studies in mice. Cell death and differentiation 15:650–659.

    Article  PubMed  CAS  Google Scholar 

  99. Zheng N, Wang P, Jeffrey PD, Pavletich NP (2000) Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102:533–539.

    Article  PubMed  CAS  Google Scholar 

  100. Saville MK, Sparks A, Xirodimas DP et al (2004) Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 279:42169–42181.

    Article  PubMed  CAS  Google Scholar 

  101. Kussie PH, Gorina S, Marechal V et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953.

    Article  PubMed  CAS  Google Scholar 

  102. Honda R, Tanaka H, Yasuda H (1997) Onco­protein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS letters 420:25–27.

    Article  PubMed  CAS  Google Scholar 

  103. Fang S, Jensen JP, Ludwig RL et al (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275:8945–8951.

    Article  PubMed  CAS  Google Scholar 

  104. Linke K, Mace PD, Smith CA et al (2008) Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell death and differentiation 15:841–848.

    Article  PubMed  CAS  Google Scholar 

  105. Kostic M, Matt T, Martinez-Yamout MA et al (2006) Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. J Mol Biol 363:433–450.

    Article  PubMed  CAS  Google Scholar 

  106. Aravind L, Koonin EV (2000) The U box is a modified RING finger - a common domain in ubiquitination. Curr Biol 10:R132–134.

    Article  PubMed  CAS  Google Scholar 

  107. Zhang M, Windheim M, Roe SM et al (2005) Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol Cell 20:525–538.

    Article  PubMed  CAS  Google Scholar 

  108. Ballinger CA, Connell P, Wu Y et al (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545.

    PubMed  CAS  Google Scholar 

  109. Murata S, Chiba T, Tanaka K (2003) CHIP: a quality-control E3 ligase collaborating with molecular chaperones. The international journal of biochemistry & cell biology 35:572–578.

    Article  CAS  Google Scholar 

  110. Jiang J, Ballinger CA, Wu Y et al (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276:42938–42944.

    Article  PubMed  CAS  Google Scholar 

  111. Xu Z, Kohli E, Devlin KI et al (2008) Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. BMC structural biology 8:26.

    Article  PubMed  CAS  Google Scholar 

  112. Wu LC, Wang ZW, Tsan JT et al (1996) Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nature genetics 14:430–440.

    Article  PubMed  CAS  Google Scholar 

  113. Meza JE, Brzovic PS, King MC, Klevit RE (1999) Mapping the functional domains of BRCA1. Interaction of the ring finger domains of BRCA1 and BARD1. J Biol Chem 274:5659–5665.

    Article  PubMed  CAS  Google Scholar 

  114. Brzovic PS, Rajagopal P, Hoyt DW et al (2001) Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nature structural biology 8:833–837.

    Article  PubMed  CAS  Google Scholar 

  115. Christensen DE, Brzovic PS, Klevit RE (2007) E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat Struct Mol Biol 14:941–948.

    Article  PubMed  CAS  Google Scholar 

  116. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nature reviews 10:550–563.

    Article  PubMed  CAS  Google Scholar 

  117. Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual review of biochemistry 78:363–397.

    Article  PubMed  CAS  Google Scholar 

  118. Reyes-Turcu FE, Wilkinson KD (2009) Polyubiquitin binding and disassembly by deubiquitinating enzymes. Chem Rev 109:1495–1508.

    Article  PubMed  CAS  Google Scholar 

  119. Storer AC, Menard R (1994) Catalytic mechanism in papain family of cysteine peptidases. Methods Enzymol 244:486–500.

    Article  PubMed  CAS  Google Scholar 

  120. Lipscomb WN, Strater N (1996) Recent Advances in Zinc Enzymology. Chem Rev 96:2375–2434.

    Article  PubMed  CAS  Google Scholar 

  121. Hu M, Li P, Li M et al (2002) Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111:1041–1054.

    Article  PubMed  CAS  Google Scholar 

  122. Nanao MH, Tcherniuk SO, Chroboczek J et al (2004) Crystal structure of human otubain 2. EMBO Rep 5:783–788.

    Article  PubMed  CAS  Google Scholar 

  123. Johnston SC, Larsen CN, Cook WJ et al (1997) Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. Embo J 16:3787–3796.

    Article  PubMed  CAS  Google Scholar 

  124. Nicastro G, Menon RP, Masino L et al (2005) The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc Natl Acad Sci USA 102:10493–10498.

    Article  PubMed  CAS  Google Scholar 

  125. Ambroggio XI, Rees DC, Deshaies RJ (2004) JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol 2:E2.

    Article  PubMed  CAS  Google Scholar 

  126. Reyes-Turcu FE, Shanks JR, Komander D, Wilkinson KD (2008) Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J Biol Chem 283:19581–19592.

    Article  PubMed  CAS  Google Scholar 

  127. Nicastro G, Masino L, Esposito V et al (2009) Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites. Biopolymers 91:1203–1214.

    Article  PubMed  CAS  Google Scholar 

  128. Zhu X, Menard R, Sulea T (2007) High incidence of ubiquitin-like domains in human ubiquitin-specific proteases. Proteins 69:1–7.

    Article  PubMed  CAS  Google Scholar 

  129. Mizuno E, Kitamura N, Komada M (2007) 14–3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase. Exp Cell Res 313:3624–3634.

    Article  PubMed  CAS  Google Scholar 

  130. Todi SV, Winborn BJ, Scaglione KM et al (2009) Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. Embo J 28:372–382.

    Article  PubMed  CAS  Google Scholar 

  131. Enesa K, Ito K, Luong le A et al (2008) Hydrogen peroxide prolongs nuclear localization of NF-kappaB in activated cells by suppressing negative regulatory mechanisms. J Biol Chem 283:18582–18590.

    Article  PubMed  CAS  Google Scholar 

  132. Row PE, Prior IA, McCullough J et al (2006) The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation. J Biol Chem 281:12618–12624.

    Article  PubMed  CAS  Google Scholar 

  133. Nakamura N, Hirose S (2008) Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol Biol Cell 19:1903–1911.

    Article  PubMed  CAS  Google Scholar 

  134. Zhu Y, Pless M, Inhorn R et al (1996) The murine DUB-1 gene is specifically induced by the betac subunit of interleukin-3 receptor. Mol Cell Biol 16:4808–4817.

    PubMed  CAS  Google Scholar 

  135. Cummins JM, Vogelstein B (2004) HAUSP is required for p53 destabilization. Cell Cycle 3:689–692.

    Article  PubMed  CAS  Google Scholar 

  136. Hanna J, Hathaway NA, Tone Y et al (2006) Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127:99–111.

    Article  PubMed  CAS  Google Scholar 

  137. Crosas B, Hanna J, Kirkpatrick DS et al (2006) Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127:1401–1413.

    Article  PubMed  CAS  Google Scholar 

  138. Chari A, Mazumder A, Jagannath S (2010) Proteasome inhibition and its therapeutic potential in multiple myeloma. Biologics 4:273–287.

    PubMed  CAS  Google Scholar 

  139. Wright JJ (2010) Combination therapy of bortezomib with novel targeted agents: an emerging treatment strategy. Clin Cancer Res 16:4094–4104.

    Article  PubMed  CAS  Google Scholar 

  140. Soucy TA, Smith PG, Milhollen MA et al (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458:732–736.

    Article  PubMed  CAS  Google Scholar 

  141. Brownell JE, Sintchak MD, Gavin JM et al (2010) Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol Cell 37:102–111.

    Article  PubMed  CAS  Google Scholar 

  142. Shanmugham A, Ovaa H (2008) DUBs and disease: activity assays for inhibitor development. Curr Opin Drug Discov Devel 11:688–696.

    PubMed  CAS  Google Scholar 

  143. Kapuria V, Peterson LF, Fang D et al (2010) Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res 70:9265–9276.

    Article  PubMed  CAS  Google Scholar 

  144. Daviet L, Colland F (2008) Targeting ubiquitin specific proteases for drug discovery. Biochimie 90:270–283.

    Article  PubMed  CAS  Google Scholar 

  145. Goldenberg SJ, Marblestone JG, Mattern MR, Nicholson B (2010) Strategies for the identification of ubiquitin ligase inhibitors. Biochem Soc Trans 38:132–136.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in the Schindelin laboratory is supported by the Deutsche Forschungsgemeinschaft (FZ 82 and SCHI 425/6-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Schindelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hänzelmann, P., Schäfer, A., Völler, D., Schindelin, H. (2012). Structural Insights into Functional Modes of Proteins Involved in Ubiquitin Family Pathways. In: Dohmen, R., Scheffner, M. (eds) Ubiquitin Family Modifiers and the Proteasome. Methods in Molecular Biology, vol 832. Humana Press. https://doi.org/10.1007/978-1-61779-474-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-474-2_39

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-473-5

  • Online ISBN: 978-1-61779-474-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics