Skip to main content

Guide to Virtual Screening: Application to the Akt Phosphatase PHLPP

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

We present an example-based description of virtual screening (VS) techniques used to identify new regulators of the Akt phosphatase PHLPP (PH domain Leucine repeat Protein Phosphatase). This enzyme opposes the effects of two kinases, Akt and PKC, which play a major role in cell growth and survival. Therefore, PHLPP is a potential therapeutic target in pathophysiologies where these pathways are either repressed, such as in diabetes and cardiovascular diseases, or over-activated as in cancer. To the best of our knowledge, no PHLPP inhibitors have been reported so far in the literature. In this study, we used a combination of chemical and virtual screening techniques that led to the identification of a number of inhibiting compounds with diverse scaffolds. These compounds bind PHLPP and inhibit cell death when tested in cellular assays. We employed GLIDE docking software to screen a library of more than 40,000 compounds selected from the NCI open depository (250,000 compounds) by similarity searches. We compare the efficiency at which we determined binding compounds from the chemical screen, and compare enrichment factors of the virtually discovered compounds over chemical screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jorgensen, W. L. (2004) The many roles of computation in drug discovery, Science (New York, N.Y.) 303, 1813–1818.

    Google Scholar 

  2. Zoete, V., Grosdidier, A., and Michielin, O. (2009) Docking, virtual high throughput screening and in silico fragment-based drug design, Journal of Cellular and Molecular Medicine 13, 238–248.

    Article  PubMed  CAS  Google Scholar 

  3. Gao, T., Furnari, F., and Newton, A. C. (2005) PHLPP: A Phosphatase that Directly Dephosphorylates Akt, Promotes Apoptosis, and Suppresses Tumor Growth, Molecular Cell 18, 13–24.

    Article  PubMed  CAS  Google Scholar 

  4. Brognard, J., and Newton, A. C. (2008) PHLiPPing the switch on Akt and protein kinase C signaling, Trends Endocrinol Metab 19, 223–230.

    Article  PubMed  CAS  Google Scholar 

  5. Ouillette, P., Erba, H., Kujawski, L., Kaminski, M., Shedden, K., and Malek, S. N. (2008) Integrated Genomic Profiling of Chronic Lymphocytic Leukemia Identifies Subtypes of Deletion 13q14, Cancer Res 68, 1012–1021.

    Article  PubMed  CAS  Google Scholar 

  6. Olaf, J. C. H., Jan-Peer, R., Legrehndem, E. A., Andreas, M. L., Christian, E., Sascha, A., Hendrik, I., Markus, G., Hartwig, H., and Thorsten, S. (2008) A comprehensive analysis of transcript signatures of the phosphatidylinositol-3 kinase/protein kinase B signal-transduction pathway in prostate cancer, BJU International 101, 1454–1460.

    Article  Google Scholar 

  7. Qiao, M., Iglehart, J. D., and Pardee, A. B. (2007) Metastatic Potential of 21 T Human Breast Cancer Cells Depends on Akt/Protein Kinase B Activation, Cancer Res 67, 5293–5299.

    Article  PubMed  CAS  Google Scholar 

  8. Liu, J., Weiss, H. L., Rychahou, P., Jackson, L. N., Evers, B. M., and Gao, T. (2008) Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis, Oncogene 28, 994–1004.

    Article  PubMed  Google Scholar 

  9. Hirano, I., Nakamura, S., Yokota, D., Ono, T., Shigeno, K., Fujisawa, S., Shinjo, K., and Ohnishi, K. (2009) Depletion of Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatases 1 and 2 by Bcr-Abl Promotes Chronic Myelogenous Leukemia Cell Proliferation through Continuous Phosphorylation of Akt Isoforms, J. Biol. Chem. 284, 22155–22165.

    Article  PubMed  CAS  Google Scholar 

  10. Armstrong, S. C. (2004) Protein kinase activation and myocardial ischemia/reperfusion injury, Cardiovasc Res 61, 427–436.

    Article  PubMed  CAS  Google Scholar 

  11. Zdychova, J., and Komers, R. (2005) Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications, Physiol Res 54, 1–16.

    PubMed  CAS  Google Scholar 

  12. Mumby, M. C., and Walter, G. (1993) Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth, Physiological Reviews 73, 673–699.

    PubMed  CAS  Google Scholar 

  13. http://dtp.nci.nih.gov/branches/dscb/repo_open.html.

  14. Sierecki, E., Sinko, W., McCammon, J. A., and Newton, A. C. Discovery of small molecule inhibitors of the PH domain leucine-rich repeat protein phosphatase (PHLPP) by chemical and virtual screening, J Med Chem 53, 6899–6911.

    Google Scholar 

  15. Mayr, L. M., and Bojanic, D. (2009) Novel trends in high-throughput screening, Curr Opin Pharmacol 9, 580–588.

    Article  PubMed  CAS  Google Scholar 

  16. Hertzberg, R. P., and Pope, A. J. (2000) High-throughput screening: new technology for the 21st century, Current Opinion in Chemical Biology 4, 445–451.

    Article  PubMed  CAS  Google Scholar 

  17. Maestro, version 9.1, Schrödinger LLC: New York, NY, 2010.

    Google Scholar 

  18. http://www.pdb.org.

  19. Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M., Eramian, D., Shen, M. y., Pieper, U., and Sali, A. (2001) Comparative Protein Structure Modeling Using MODELLER, John Wiley & Sons, Inc.

    Google Scholar 

  20. Das, A. K., Helps, N. R., Cohen, P. T., and Barford, D. (1996) Crystal structure of the protein serine/threonine phosphatase 2 C at 2.0 A resolution, The EMBO journal 15, 6798–6809.

    PubMed  CAS  Google Scholar 

  21. Rogers, J. P., Beuscher, A. E. T., Flajolet, M., McAvoy, T., Nairn, A. C., Olson, A. J., and Greengard, P. (2006) Discovery of protein phosphatase 2 C inhibitors by virtual screening, Journal of medicinal chemistry 49, 1658–1667.

    Article  PubMed  CAS  Google Scholar 

  22. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0, Bioinformatics 23, 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  23. Schrödinger Suite 2010 Protein Preparation Wizard; Epik version 2.1, Schrödinger, LLC, New York, NY, 2010; Impact version 5.6, Schrödinger, LLC, New York, NY, 2010; Prime version 2.2, Schrödinger, LLC, New York, NY, 2010.

    Google Scholar 

  24. MacroModel, version 9.8, Schrödinger LLC: New York, NY, 2010.

    Google Scholar 

  25. http://cactus.nci.nih.gov/download/nci/.

  26. http://accelrys.com/products/discovery-studio/.

  27. LigPrep, version 2.4 Schrödinger LLC: New York, NY, 2010.

    Google Scholar 

  28. Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., and Shenkin, P. S. (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, Journal of medicinal chemistry 47, 1739–1749.

    Article  PubMed  CAS  Google Scholar 

  29. Goodsell, D. S., Morris, G. M., and Olson, A. J. (1996) Automated docking of flexible ligands: applications of AutoDock, J Mol Recognit 9, 1–5.

    Article  PubMed  CAS  Google Scholar 

  30. Trott, O., and Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry 31, 455–461.

    Google Scholar 

  31. Jones, G., Willett, P., Glen, R. C., Leach, A. R., and Taylor, R. (1997) Development and validation of a genetic algorithm for flexible docking, J Mol Biol 267, 727–748.

    Article  PubMed  CAS  Google Scholar 

  32. Zsoldos, Z., Reid, D., Simon, A., Sadjad, S., and Johnson, P. (2007) eHiTS: A new fast, exhaustive flexible ligand docking system, Journal of Molecular Graphics and Modelling 26, 198–212.

    Article  PubMed  CAS  Google Scholar 

  33. Jain, A. N. (2003) Surflex: A Fully Automatic Flexible Molecular Docking Using a Molecular Similarity-Based Search Engine, Journal of medicinal chemistry 46, 499–511.

    Article  PubMed  CAS  Google Scholar 

  34. Lin, J. H., Perryman, A. L., Schames, J. R., and McCammon, J. A. (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme, Journal of the American Chemical Society 124, 5632–5633.

    Article  PubMed  CAS  Google Scholar 

  35. Lin, J. H., Perryman, A. L., Schames, J. R., and McCammon, J. A. (2003) The relaxed complex method: Accommodating receptor flexibility for drug design with an improved scoring scheme, Biopolymers 68, 47–62.

    Article  PubMed  CAS  Google Scholar 

  36. Amaro, R. E., Baron, R., and McCammon, J. A. (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design, Journal of computer-aided molecular design 22, 693–705.

    Article  PubMed  CAS  Google Scholar 

  37. Hamelberg, D., de Oliveira, C. A., and McCammon, J. A. (2007) Sampling of slow diffusive conformational transitions with accelerated molecular dynamics, The Journal of chemical physics 127, 155102.

    Article  PubMed  Google Scholar 

  38. Hamelberg, D., Mongan, J., and McCammon, J. A. (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules, The Journal of chemical physics 120, 11919–11929.

    Article  PubMed  CAS  Google Scholar 

  39. Hamelberg, D., and McCammon, J. A. (2005) Fast peptidyl cis-trans isomerization within the flexible Gly-rich flaps of HIV-1 protease, J Am Chem Soc 127, 13778–13779.

    Article  PubMed  CAS  Google Scholar 

  40. Hamelberg, D., Shen, T., and Andrew McCammon, J. (2005) Relating kinetic rates and local energetic roughness by accelerated molecular-dynamics simulations, J Chem Phys 122, 241103.

    Article  PubMed  Google Scholar 

  41. de Oliveira, C. A., Hamelberg, D., and McCammon, J. A. (2006) On the application of accelerated molecular dynamics to liquid water simulations, J Phys Chem B 110, 22695–22701.

    Article  PubMed  Google Scholar 

  42. de Oliveira, C. A., Hamelberg, D., and McCammon, J. A. (2007) Estimating kinetic rates from accelerated molecular dynamics simulations: alanine dipeptide in explicit solvent as a case study, J Chem Phys 127, 175105.

    Article  PubMed  Google Scholar 

  43. de Oliveira, C. A., Hamelberg, D., and McCammon, J. A. (2008) Coupling Accelerated Molecular Dynamics Methods with Thermodynamic Integration Simulations, J Chem Theory Comput 4, 1516–1525.

    Article  PubMed  Google Scholar 

  44. Amaro, R. E., and Li, W. W. (2009) Emerging Methods for Ensemble-Based Virtual Screening, Current topics in medicinal chemistry.

    Google Scholar 

  45. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling, Bioinformatics 22, 195–201.

    Article  PubMed  CAS  Google Scholar 

  46. Lammers, T., and Lavi, S. (2007) Role of type 2C protein phosphatases in growth regulation and in cellular stress signaling, Crit Rev Biochem Mol Biol 42, 437–461.

    Article  PubMed  CAS  Google Scholar 

  47. Schweighofer, A., Hirt, H., and Meskiene, I. (2004) Plant PP2C phosphatases: emerging functions in stress signaling, Trends Plant Sci 9, 236–243.

    Article  PubMed  CAS  Google Scholar 

  48. Irwin, J. J., and Shoichet, B. K. (2004) ZINC- A Free Database of Commercially Available Compounds for Virtual Screening, Journal of Chemical Information and Modeling 45, 177–182.

    Article  Google Scholar 

  49. Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., and Mee, R. P. (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes, J Comput Aided Mol Des 11, 425–445.

    Article  PubMed  CAS  Google Scholar 

  50. Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., and Mainz, D. T. (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes, Journal of medicinal chemistry 49, 6177–6196.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Alexandra C. Newton for stimulating discussions. This work was supported in part by the Molecular Biophysics Training grant GM08326 (W.S.), the NSF grant MCB-0506593, the NIH grant GM31749, NBCR, CTBP, HHMI, the NSF Supercomputer Centers (J.A.M.), and the Juvenile Diabetes Research Foundation grant 3-2008-478 (E.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Sinko or César A. F. de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sinko, W., Sierecki, E., de Oliveira, C.A.F., McCammon, J.A. (2012). Guide to Virtual Screening: Application to the Akt Phosphatase PHLPP. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_33

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics