Advertisement

Interpretation Guidelines of mtDNA Control Region Sequence Electropherograms in Forensic Genetics

  • Manuel Crespillo MarquezEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 830)

Abstract

Forensic mitochondrial DNA (mtDNA) analysis is a complementary technique to forensic nuclear DNA (nDNA) and trace evidence analysis. Its use has been accepted by the vast majority of courts of law around the world. However for the forensic community it is crucial to employ standardized methods and procedures to guaranty the quality of the results obtained in court. In this chapter, we describe the most important aspects regarding the interpretation and assessment of mtDNA analysis, and offer a simple guide which places particular emphasis on those aspects that can impact the final interpretation of the results. These include the criteria for authenticating a sequence excluding the contaminant origin, defining the quality of a sequence, editing procedure, alignment criteria for searching the databases, and the statistical evaluation of matches. It is not easy to establish a single guide to interpretation for mtDNA analysis; however, it is important to understand all variables that may in some way affect the final conclusion in the context of a forensic case. As a general rule, laboratories should be cautious before issuing the final conclusion of an mtDNA analysis, and consider any significant limitations regarding current understanding of specific aspects of the mtDNA molecule.

Key words

Mitochondrial DNA Interpretation Forensic Database Heteroplasmy 

Notes

Acknowledgments

The author is very grateful to Miguel Paredes for their valued and enriching comments on this chapter.

References

  1. 1.
    Carracedo A, Bär W, Lincoln P et al (2000) DNA Commission of the International Society for Forensic Genetics: guidelines for mitochondrial DNA typing. Forensic Sci Int 110:79–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Tully G, Bär W, Brinkmann B et al (2001) Considerations by the European DNA profiling (EDNAP) group on the working practices, nomenclature and interpretation of mitochondrial DNA profiles. Forensic Sci Int 124:83–91.PubMedCrossRefGoogle Scholar
  3. 3.
    Scientific Working Group on DNA Analysis Methods (SWGDAM) (2003) Guidelines for mitochondrial DNA (mtDNA) nucleotide sequence interpretation. Forensic Sci Commun 5 (2). http://www.fbi.gov/hq/lab/fsc/backissu/april2003/swgdammitodna.htm.
  4. 4.
    Wilson MR, DiZinno JA, Polanskey D et al (1995a) Validation of mitochondrial DNA sequencing for forensic casework analysis. Int J Legal Med 108:68–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Wilson MR, Polanskey D, Butler J. et al (1995b) Extraction, PCR amplification, and sequencing of mitochondrial DNA from human hair shafts. Biotechniques 18:662–669.PubMedGoogle Scholar
  6. 6.
    Stewart JE, Aagaard PJ, Pokorak EG et al (2003) Evaluation of a multicapillary electrophoresis instrument for mitochondrial DNA typing. J Forensic Sci 48:571–80.PubMedGoogle Scholar
  7. 7.
    Automated DNA Sequencing Chemistry Guide. Applied Biosystems. https://products.appliedbiosystems.com.
  8. 8.
    Andrews RM, Kubacka I, Chinnery PF et al (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147.PubMedCrossRefGoogle Scholar
  9. 9.
    Balding D, Nichols R (1994) DNA profile match probability calculation: how to allow for population stratification, relatedness, database selection and single bands. Forensic Sci Int 64: 125–140.PubMedCrossRefGoogle Scholar
  10. 10.
    Holland M, Parsons T (1999) Mitochondrial DNA sequence analysis-validation and use for forensic casework. Forensic Sci Rev 11:21–50.Google Scholar
  11. 11.
    Tully LA, Parsons TJ, Steighner RJ et al (2000) A sensitive denaturing gradient-gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region I of the human mtDNA control region. Am J Hum Genet 67: 432–443.PubMedCrossRefGoogle Scholar
  12. 12.
    Bandelt H-J, Quintana-Murci L, Salas A et al (2002) The fingerprint of phantom mutations in mtDNA data. Am J Hum Genet 71: 1150–1160.PubMedCrossRefGoogle Scholar
  13. 13.
    Bandelt H–J, Lahermo P, Richards M et al (2001) Detecting errors in mtDNA data by phylogenetic analysis. Int J Legal Med 115: 64–69.Google Scholar
  14. 14.
    Bandelt H-J, Salas A, Lutz-Bonengel S (2004) Artificial recombination in forensic mtDNA population databases. Int J Legal Med 118: 267–273PubMedCrossRefGoogle Scholar
  15. 15.
    Bandelt H-J, Kivisild T, Parik J et al (2006) Lab-Specific Mutation Processes. In: Bandelt H-J, Macaulay V, Richards M, editors. Human mitochondrial DNA and the evolution of Homo sapiens. Springer-Verlag, Berlin-Heidelberg. pp. 117–146.Google Scholar
  16. 16.
    Lee HY, Song I, Ha E et al (2008) mtDNAmanager: a Web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences. BMC Bioinformatics 9:473.CrossRefGoogle Scholar
  17. 17.
    Kloss-Brandstätter A, Pacher D, Schönherr S et al (2011) HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups. Hum Mutat 32: 25–32.Google Scholar
  18. 18.
    Van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30:E386–E394.PubMedCrossRefGoogle Scholar
  19. 19.
    Calloway CD, Reynolds RL, Herrin GL et al (2000) The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age. Am J Hum Genet 66:1384–1397.PubMedCrossRefGoogle Scholar
  20. 20.
    Mark Stoneking (2000) Hypervariable sites in the mtDNA control region are mutational hotspots. Am J Hum Genet 67:1029–1032.PubMedCrossRefGoogle Scholar
  21. 21.
    Brandstätter A, Parson W (2003) Mitochondrial DNA heteroplasmy or artefacts – a matter of the amplification strategy? Int J Legal Med 117:180–184.PubMedCrossRefGoogle Scholar
  22. 22.
    Bendall KE, Macaulay VA, Baker JR, Sykes BC (1996) Heteroplasmic point mutations in the human mtDNA control region. Am J Hum Genet 59:1276–1287.PubMedGoogle Scholar
  23. 23.
    Sullivan KM, Alliston-Greiner R, Archampong FIA et al (1997) A single difference in mtDNA control region sequence observed between hair shaft and reference samples from a single donor. Proceedings from the 17th International Symposium on Human Identification. Promega Corporation, Madison, Wis, 126–129.Google Scholar
  24. 24.
    Wilson MR, Polanskey D, Replogle J et al (1997) A family exhibiting heteroplasmy in the human mitochondrial DNA control region reveals both somatic mosaicism and pronounced segregation of mitotypes. HumGenet 100:167–171.PubMedCrossRefGoogle Scholar
  25. 25.
    Linch CA, Whiting DA, Holland MM (2001) Human hair histogenesis for the mitochondrial DNA forensic scientist. J Forensic Sci 46:844–853.PubMedGoogle Scholar
  26. 26.
    Weißensteiner H, Schönherr S, Specht G et al (2010) eCOMPAGT integrates mtDNA: import, validation and export of mitochondrial DNA profiles for population genetics, tumour dynamics and genotype-phenotype association studies. BMC Bioinformatics 11:122.PubMedCrossRefGoogle Scholar
  27. 27.
    Monson KL, Miller KWP, Wilson MR, DiZinno JA, Budowle B (2002) The mtDNA population database: an integrated software and database resource for forensic comparison. Forensic Sci Commu. 4 (2). Available: http://www.fbi.gov/hq/lab/fsc/backissu/april2002/miller1.htm.
  28. 28.
    Parson W, Dür A (2007) EMPOP-A forensic mtDNA database. Forensic Sci Int Gent 1:88–92. Available on-line http://www.empop.org.
  29. 29.
    Wilson MR, Allard MW, Monson K et al (2002) Recommendations for consistent treatment of length variants in the human mitochondrial DNA control region. Forensic Sci Int 129:35–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Wilson MR, Allard MW, Monson K et al (2002) Further discussion of the consistent treatment of length variants in the human mitochondrial DNA control region. Forensic Sci Commun. 4:1–8.Google Scholar
  31. 31.
    Bandelt H-J, Parson W (2008) Consistent treatment of length variants in the human mtDNA control region: a reappraisal. Int J Legal Med 122:11–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Servicio de BiologíaInstituto Nacional de Toxicología y Ciencias ForensesBarcelonaSpain

Personalised recommendations