Skip to main content

Systems Biology in Psychiatric Research: From Complex Data Sets Over Wiring Diagrams to Computer Simulations

  • Protocol
  • First Online:
Psychiatric Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 829))

Abstract

The classification of psychiatric disorders has always been a problem in clinical settings. The present debate about the major systems in clinical practice, DSM-IV and ICD-10, has resulted in attempts to improve and replace those schemes by some that include more endophenotypic and molecular features. However, these disorders not only require more precise diagnostic tools, but also have to be viewed more extensively in their dynamic behaviors, which require more precise data sets related to their origins and developments. This enormous challenge in brain research has to be approached on different levels of the biological system by new methods, including improvements in electroencephalography, brain imaging, and molecular biology. All these methods entail accumulations of large data sets that become more and more difficult to interpret. In particular, on the molecular level, there is an apparent need to use highly sophisticated computer programs to tackle these problems. Evidently, only interdisciplinary work among mathematicians, physicists, biologists, and clinicians can further improve our understanding of complex diseases of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadock, B. J., Sadock, V. A. (ed.) (2005) Kaplan`s and Sadock’s Synopsis of Psychiatry. Wolters Kluwer, New York.

    Google Scholar 

  2. Puls, I., and Gallinat, J. (2008) The concept of endophenotypes in psychiatric diseases meeting the expectations?, Pharmacopsychiatry 41 Suppl 1, S37–43.

    Article  PubMed  Google Scholar 

  3. Tretter, F. Gebicke-Haerter, P. (2010) Neuropsychiatry – Subject, Concepts, Methods and Computational Model, in Systems Biology in Psychiatric Research (Tretter, F., Gebicke-Haerter, P.J., Mendoza, E.R., Winterer, G. eds), pp. 27–80, Wiley-Blackwell, Weinheim.

    Chapter  Google Scholar 

  4. Jaspers, K. (ed.) (1913, 1997) General Psychopathology - Volumes 1 & 2. Johns Hopkins University Press. Baltimore and London.

    Google Scholar 

  5. Tretter, F. (ed.) (2010) Philosophical Aspects of Neuropsychiatry, in Systems Biology in Psychiatric Research (Tretter, F., Gebicke-Haerter, P.J., Mendoza, E.R., Winterer, G. eds), pp. 3–26, Wiley-Blackwell, Weinheim.

    Google Scholar 

  6. Taylor MA, Vaidya NA (ed.) (2009) Descriptive Psychopathology. Cambridge University Press, Cambridge Mass.

    Google Scholar 

  7. Bennett, M. R. & Hacker, P. M. S. (eds,) (2003) Philosophical Foundations of Neuroscience. Malden (Mass.): Blackwell Publishing.

    Google Scholar 

  8. Tretter F., Albus M. (2007) “Computational Neuropsychiatry” of Working Memory Disorders in Schizophrenia: The Network Connectivity in Prefrontal Cortex - Data and Models. Pharmacopsychiatry 40, S2–S16.

    Article  Google Scholar 

  9. Burt, T., Sederer, L., Isgack, WW (eds.) (2002) Outcome Management in Psychiatry: A Critical Review. Washington, DC: American Psychiatry Press.

    Google Scholar 

  10. Andreasen, N. (ed.) (2004) Brave New Brain- Conquering Mental Illness in the Era of the Genome. Oxford Univ. Press, New York.

    Google Scholar 

  11. Griesinger W (ed.) (1882) Mental Pathology and Therapeutics. William Wood & Co., New York.

    Google Scholar 

  12. Vernalaken, I., Gruender, G., Cumming, P. (2010) Progress in Psychopharmacology through Molecular Imaging, in Systems Biology in Psychiatric Research: (Tretter, F., Gebicke-Haerter, P.J., Mendoza, E.R., Winterer, G. eds), pp.189-206Wiley-Blackwell, Weinheim.

    Google Scholar 

  13. Michel, Ch. M., Koenig, T., Brandeis, D., Gianotti, L. R. R., Wackermann, J. (eds) (2009) Electrical Neuroimaging. Cambridge University Press, New York.

    Google Scholar 

  14. Koch M. (ed.) (2006) Animal Models of Neuropsychiatric Diseases . Imperial College Press, London.

    Google Scholar 

  15. Gallinat J, Obermayer, K, Heinz A (2007) Systems Neurobiology of the Dysfunctional Brain. Pharmacopsychiatry Suppl. 1:S40–S44.

    Article  Google Scholar 

  16. Gebicke-Haerter, P. J. (2008) Systems biology in molecular psychiatry, Pharmacopsychiatry 41 Suppl 1, S19–27.

    Article  PubMed  CAS  Google Scholar 

  17. Tretter, F., and Gebicke-Haerter, P. J. (2009) Philosophy of neuroscience and options of systems science, Pharmacopsychiatry 42 Suppl 1, S2–S10.

    Article  PubMed  Google Scholar 

  18. Meyer-Lindenberg, A., and Weinberger, D. R. (2006) Intermed.iate phenotypes and genetic mechanisms of psychiatric disorders, Nat Rev Neurosci 7 , 818–827.

    Article  PubMed  CAS  Google Scholar 

  19. Wiener, N. (ed.) (1948) Cybernetics. MIT press, Cambridge, Mass.

    Google Scholar 

  20. Bertalanffy, L.V. (ed.) (1968) General System Theory. Braziller, New York.

    Google Scholar 

  21. Watts, D. J., and Strogatz, S. H. (1998) Collective dynamics of ‘small-world’ networks, Nature 393, 440–442.

    Article  PubMed  CAS  Google Scholar 

  22. Strogatz, S.H. (ed.) (2001) Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering g (Studies in Nonlinearity) . The Perseus Books Group, New York.

    Google Scholar 

  23. Periwal V, Szallasi Z, Stelling J. (2006) System modelling in Cellular Biology, in System Modeling in Cellular Biology (Szallasi, Z., Stelling, J. & Periwal, V., ed.), pp. 7–14, The MIT Press, Cambridge, Mass.

    Google Scholar 

  24. Quarteroni, A., Formaggia, L., Veneziani, A. (eds) (2006) Complex Systems in Biomed.icine. Springer, Berlin.

    Google Scholar 

  25. Stelling, J, Sauer, U. J. Doyle, F J Doyle, J.(2006) Complexity and Robustness of cellular Systems, in System Modeling in Cellular Biology (Szallasi, Z., Stelling, J. & Periwal, V., ed.), pp. 3–18, The MIT Press, Cambridge, Mass.

    Google Scholar 

  26. Arbib M A, Grethe JS. (eds) (2001) Computing the Brain: A Guide to Neuroinformatics. Academic Press, San Diego.

    Google Scholar 

  27. Arbib MA (ed.) (2002) The Handbook of Brain Theory and Neural Networks. MIT Press: Cambridge, Mass.

    Google Scholar 

  28. Dayan, P. Abbott L. (ed.) (2005) Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge, Mass.

    Google Scholar 

  29. Freeman, W. J. (ed.) (2000). Neurodynamics: An Exploration in Mesoscopic Brain Dynamics. Springer, Berlin.

    Google Scholar 

  30. Boccara N (2004) Modeling Complex Systems. Springer, Berlin.

    Google Scholar 

  31. Tretter, F. (1989): System-wissenschaft in der Med.izin. Deutsches Ärzteblatt 43, 3198–3209.

    Google Scholar 

  32. Ahn, A. C., Tewari, M., Poon, C. S., and Phillips, R. S. (2006) The limits of reductionism in medicine: could systems biology offer an alternative?, PLoS Med. 3, e208.

    Article  PubMed  Google Scholar 

  33. Ahn, A. C., Tewari, M., Poon, C. S., and Phillips, R. S. (2006) The clinical applications of a systems approach, PLoS Med. 3, e209.

    Article  PubMed  Google Scholar 

  34. Kitano, H. (2002) Systems biology: a brief overview, Science 295, 1662–1664.

    Article  PubMed  CAS  Google Scholar 

  35. Kitano, H. (2002) Computational systems biology, Nature 420, 206–210.

    Article  PubMed  CAS  Google Scholar 

  36. Klipp E, Herwig R, Kowald A, Wielring C, Lehrach H (eds) (2005) Systems Biology in Practice: Concepts, Implementation and Application. Wiley-VCH, Weinheim.

    Google Scholar 

  37. Klipp E, Liebermeister, W., Herwig R, Wierling C, Kowald, A, Lehrach H, Herwig R (ed.) (2009) Systems Biology: A textbook. Wiley-VCH, Weinheim.

    Google Scholar 

  38. Helms, V. (ed.) (2008): Principles of Computational Cell Biology: From Protein Complexes to Cellular Networks. Wiley-VCH, Weinheim.

    Google Scholar 

  39. Noble, D. (2006) Multilevel Modelling in Systems Biology: From Cells to Whole Organs. The Role of Modeling in Systems Biology, in System Modeling in Cellular Biology (Szallasi, Z., Stelling, J. & Periwal, V., ed.), pp. 297–312, The MIT Press, Cambridge, Mass.

    Google Scholar 

  40. Noble, D. (2008) Music of Life: Biology beyond Genes. Oxford Univ. Press, New York.

    Google Scholar 

  41. Tretter, F., Gallinat, J., Muller, W. E. (2008) Systems biology and psychiatry: the functional architecture of molecular networks in mental disorders- data and models, Pharmacopsychiatry 41 Suppl 1, S1.

    Google Scholar 

  42. Tretter, F., Gebicke-Haerter, P. J., Albus, M., an der Heiden, U., and Schwegler, H. (2009) Systems biology and addiction, Pharmacopsychiatry 42 Suppl 1 , S11–31.

    Google Scholar 

  43. Matthaeus F., Smith, A., Gebicke-Haerter, P. (2010): Some Useful Mathematical Tools to Transform Microarray Data into Interactive Molecular Networks, in Systems Biology in Psychiatric Research (Tretter, F., Gebicke-Haerter, P.J., Mendoza, E.R., Winterer, G. (eds) pp. 277–300, Wiley-Blackwell, Weinheim.

    Google Scholar 

  44. Smith, J., Huett, M-T. (2010) Network Dynamics as an Interface between Modeling and Experiment in Systems Biology, in Systems Biology in Psychiatric Research (Tretter, F., Gebicke-Haerter, P.J., Mendoza, E.R., Winterer, G. (eds) pp 243–270, Wiley-Blackwell, Weinheim.

    Chapter  Google Scholar 

  45. NIH, National Institute of Health (2007) Systems Biology http://www.nigms.nih.gov/Initiatives/SysBio/.

  46. Reckow, S., Gormanns, P., Holsboer, F., and Turck, C. W. (2008) Psychiatric disorders biomarker identification: from proteomics to systems biology, Pharmacopsychiatry 41 Suppl 1, S70–77.

    Article  PubMed  CAS  Google Scholar 

  47. Sananbenesi, F., and Fischer, A. (2009) The epigenetic bottleneck of neurodegenerative and psychiatric diseases, Biol Chem 390, 1145–1153.

    Article  PubMed  CAS  Google Scholar 

  48. Zhubi, A., Veldic, M., Puri, N. V., Kadriu, B., Caruncho, H., Loza, I., Sershen, H., Lajtha, A., Smith, R. C., Guidotti, A., Davis, J. M., and Costa, E. (2009) An upregulation of DNA-methyltransferase 1 and 3a expressed. in telencephalic GABAergic neurons of schizophrenia patients is also detected. in peripheral blood lymphocytes, Schizophr Res 111, 115–122.

    Article  PubMed  CAS  Google Scholar 

  49. Dahl, C., and Guldberg, P. (2007) A ligation assay for multiplex analysis of CpG methylation using bisulfite-treated. DNA, Nucleic Acids Res 35 , e144.

    Article  Google Scholar 

  50. Shiflet, AB, Shiflet GW (2006) Introduction to Computational Science. Princeton University Press, Princeton.

    Google Scholar 

  51. Fishwick P. A. (ed.) (2007) Handbook of Dynamic System Modeling. Chapman & Hall, New York.

    Google Scholar 

  52. Szallasi Z, Stelling J, Periwal V (2006) (ed.) System Modeling in Cellular Biology. MIT Press, Cambridge, Mass.

    Google Scholar 

  53. Conrad E.D., Tyson J. J. (2006) Modeling Molecular Interaction Networks with Nonlinear Ordinary Differential Equations., in System Modeling in Cellular Biology. (Szallasi Z, S. J., Periwal V, ed.), pp. 97–124, MIT Press, Cambridge, Mass.

    Google Scholar 

  54. Paulsson, J., Elf, J. (2006) Modeling Molecular of Intracellular Kinetics, in System Modelling in Cellular Biology (Szallasi Z, P. V., Stelling ed.), pp. 149–176 Cambridge Ma.

    Google Scholar 

  55. Kell, D. B., Knowles, J.D. (2006) The Role of Modeling in Systems Biology in System Modeling in Cellular Biology (Szallasi, Z., Stelling, J. & Periwal, V., ed.), pp. 3–18, The MIT Press, Cambridge, Mass.

    Google Scholar 

  56. Tretter, F., and Scherer, J. (2006) Schizophrenia, neurobiology and the methodology of systemic modeling, Pharmacopsychiatry 39 Suppl 1, S26–35.

    Article  PubMed  Google Scholar 

  57. Voit, E. O., Qi, Z., and Miller, G. W. (2008) Steps of modeling complex biological systems, Pharmacopsychiatry 41 Suppl 1, S78–84.

    Article  PubMed  Google Scholar 

  58. Finney A., Hucka M., Borstewin J., Keating SM., Shapiro BE., Matthews J Kovitz Bl., Schilstra MJ., Funahashi A., Doyle J., Kitano H. (2006) Software Infrastructure for Effective Communication and reuse of Computational Models, in System Modeling in Cellular Biology (Szallasi, Z., Stelling, J. & Periwal, V., ed.), pp. 297–312, The MIT Press, Cambridge, Mass.

    Google Scholar 

  59. Kitano H. (ed.) (2001) Foundations of Systems Biology. MIT Press, Cambridge, Mass.

    Google Scholar 

  60. Tretter, F., and Albus, M. (2008) Systems biology and psychiatry - modeling molecular and cellular networks of mental disorders, Pharmacopsychiatry 41, Suppl 1, S2–S18.

    Google Scholar 

  61. ed.elman G M, T. G., (ed.) (2000) A Universe Of Consciousness How Matter Becomes Imagination, Basic Books, New York.

    Google Scholar 

  62. ed.elman G M, T. G. (2000) A Universe Of Consciousness How Matter Becomes Imagination,, Basic Books, New York.

    Google Scholar 

  63. Carlsson, A. (1988) The current status of the dopamine hypothesis of schizophrenia, Neuropsychopharmacology 1, 179–186.

    Article  PubMed  CAS  Google Scholar 

  64. Carlsson, A. (2006) The neurochemical circuitry of schizophrenia, Pharmacopsychiatry 39 Suppl 1 , S10–14.

    Article  PubMed  CAS  Google Scholar 

  65. Tretter F, Müller W, Carlsson A (2006). Systems Science, Computational Science and Neurobiology of Schizophrenia. Pharmacopsychiatry 39, 1–2.

    Google Scholar 

  66. Berns, G. S., and Sejnowski, T. J. (1998) A computational model of how the basal ganglia produce sequences, J Cogn Neurosci 10, 108–121.

    Article  PubMed  CAS  Google Scholar 

  67. Winterer, G. (2006) Cortical microcircuits in schizophrenia--the dopamine hypothesis revisited., Pharmacopsychiatry 39 Suppl 1, S68–71.

    Google Scholar 

  68. Goldman-Rakic, P. S. (1999) The physiological approach: functional architecture of working memory and disordered. cognition in schizophrenia, Biol Psychiatry 46, 650–661.

    Article  PubMed  CAS  Google Scholar 

  69. Goldman-Rakic, P. S., Muly, E. C., 3rd, and Williams, G. V. (2000) D(1) receptors in prefrontal cells and circuits, Brain Res Brain Res Rev 31, 295–301.

    Article  PubMed  CAS  Google Scholar 

  70. Durstewitz, D., Seamans, J. K., and Sejnowski, T. J. (2000) Neurocomputational models of working memory, Nat Neurosci 3 Suppl, 1184–1191.

    Article  PubMed  CAS  Google Scholar 

  71. Brunel, N., and Wang, X. J. (2001) Effects of neuromodulation in a cortical network model of object working memory dominated. by recurrent inhibition, J Comput Neurosci 11, 63–85.

    Article  PubMed  CAS  Google Scholar 

  72. Wang, X. J., Tegner, J., Constantinidis, C., and Goldman-Rakic, P. S. (2004) Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory, Proc Natl Acad Sci U S A 101, 1368–1373.

    Article  PubMed  CAS  Google Scholar 

  73. Wang, X. J. (2006) Toward a prefrontal microcircuit model for cognitive deficits in schizophrenia, Pharmacopsychiatry 39 Suppl 1, S80–87.

    Article  PubMed  Google Scholar 

  74. Seamans, J. K., Durstewitz, D., Christie, B. R., Stevens, C. F., and Sejnowski, T. J. (2001) Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons, Proc Natl Acad Sci U S A 98, 301–306.

    Article  PubMed  CAS  Google Scholar 

  75. Winterer, G., and Weinberger, D. R. (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia, Trends Neurosci 27, 683–690.

    Article  PubMed  CAS  Google Scholar 

  76. Abbott, L. F., and Regehr, W. G. (2004) Synaptic computation, Nature 431, 796–803.

    Article  PubMed  CAS  Google Scholar 

  77. Grant, S. G. (2003) Systems biology in neuroscience: bridging genes to cognition, Curr Opin Neurobiol 13, 577–582.

    Article  PubMed  CAS  Google Scholar 

  78. Pocklington, A. J., Cumiskey, M., Armstrong, J. D., and Grant, S. G. (2006) The proteomes of neurotransmitter receptor complexes form modular networks with distributed. functionality underlying plasticity and behaviour, Mol Syst Biol 2, 2006 0023.

    PubMed  Google Scholar 

  79. Qi, Z., Miller, G. W., and Voit, E. O. (2010) Computational modeling of synaptic neurotransmission as a tool for assessing dopamine hypotheses of schizophrenia, Pharmacopsychiatry 43 Suppl 1, S50–60.

    Article  PubMed  CAS  Google Scholar 

  80. Best, J., Reed., M., and Nijhout, H. F. (2010) Models of dopaminergic and serotonergic signaling, Pharmacopsychiatry 43 Suppl 1, S61–66.

    Google Scholar 

  81. Tretter, F. (2010) Mental illness, synapses and the brain--behavioral disorders by a system of molecules within a system of neurons?, Pharmacopsychiatry 43 Suppl 1, S9–S20.

    Article  PubMed  Google Scholar 

  82. Fernandez, E., Schiappa, R., Girault, J. A., and Le Novere, N. (2006) DARPP-32 is a robust integrator of dopamine and glutamate signals, PLoS Comput Biol 2, e176.

    Article  PubMed  Google Scholar 

  83. Lindskog, M., Kim, M., Wikstrom, M. A., Blackwell, K. T., and Kotaleski, J. H. (2006) Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation, PLoS Comput Biol 2, e119.

    Article  PubMed  Google Scholar 

  84. Lindskog, M. (2008) Modelling of DARPP-32 regulation to understand intracellular signaling in psychiatric disease, Pharmacopsychiatry 41, Suppl 1, S99–S104.

    Google Scholar 

  85. Aghajanian, G. K., and Marek, G. J. (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms, Brain Res Brain Res Rev 31, 302–312.

    Article  PubMed  CAS  Google Scholar 

  86. Moghaddam, B., and Homayoun, H. (2008) Divergent plasticity of prefrontal cortex networks, Neuropsychopharmacology 33, 42–55.

    Article  PubMed  Google Scholar 

  87. Moghaddam, B. (2003) Bringing order to the glutamate chaos in schizophrenia, Neuron 40, 881–884.

    Article  PubMed  CAS  Google Scholar 

  88. Benes, F. M. (2009) Neural circuitry models of schizophrenia: is it dopamine, GABA, glutamate, or something else?, Biol Psychiatry 65, 1003–1005.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Tretter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tretter, F., Gebicke-Haerter, P.J. (2012). Systems Biology in Psychiatric Research: From Complex Data Sets Over Wiring Diagrams to Computer Simulations. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 829. Humana Press. https://doi.org/10.1007/978-1-61779-458-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-458-2_36

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-457-5

  • Online ISBN: 978-1-61779-458-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics