Skip to main content

Heterogeneity of Astrocytic Form and Function

  • Protocol
  • First Online:
Astrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 814))

Abstract

Astrocytes participate in all essential CNS functions, including blood flow regulation, energy metabolism, ion and water homeostasis, immune defence, neurotransmission, and adult neurogenesis. It is thus not surprising that astrocytic morphology and function differ between regions, and that different subclasses of astrocytes exist within the same brain region. Recent lines of work also show that the complexity of protoplasmic astrocytes increases during evolution. Human astrocytes are structurally more complex, larger, and propagate calcium signals significantly faster than rodent astrocytes. In this chapter, we review the diversity of astrocytic form and function, while considering the markedly expanded roles of astrocytes with phylogenetic evolution. We also define major challenges for the future, which include determining how astrocytic functions are locally specified, defining the molecular controls upon astrocytic fate and physiology and establishing how evolutionary changes in astrocytes contribute to higher cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Virchow, R. L. K. (1858) Die cellularpathologie in ihrer begründung auf physiologische und pathologische gewebelehre, A. Hirschwald, Berlin,.

    Google Scholar 

  2. Golgi, C. (1871) Contribuzione alla fina Anatomia degli organi centrali del sistema nervosos., Rivista clinica di Bologna, Bologna.

    Google Scholar 

  3. Lenhossek, M. (1893) Der feinere Bau des Nervensystems im Lichte neuester Forschung, Fischer’s Medicinische Buchhandlung, Berlin.

    Google Scholar 

  4. Kölliker, A. (1889) Handbuch der gewebelehre des menschen, 6. umgearb. aufl. ed., n.p.

    Google Scholar 

  5. Andriezen, W. L. (1893) The neuroglia elements of the brain., BMJ 2, 227–230.

    Article  PubMed  CAS  Google Scholar 

  6. Cajal, R. (1897) Histology of the Nervous System of Man and Vertebrates., Oxford University Press., Oxford.

    Google Scholar 

  7. Kettenmann, H., and Verkhratsky, A. (2008) Neuroglia: the 150 years after, Trends Neurosci 31, 653–659.

    Article  PubMed  CAS  Google Scholar 

  8. Oberheim, N. A., Takano, T., Han, X., He, W., Lin, J. H., Wang, F., Xu, Q., Wyatt, J. D., Pilcher, W., Ojemann, J. G., Ransom, B. R., Goldman, S. A., and Nedergaard, M. (2009) Uniquely hominid features of adult human astrocytes, J Neurosci 29, 3276–3287.

    Article  PubMed  CAS  Google Scholar 

  9. Oberheim, N. A., Wang, X., Goldman, S., and Nedergaard, M. (2006) Astrocytic complexity distinguishes the human brain, Trends Neurosci 29, 547–553.

    Article  PubMed  CAS  Google Scholar 

  10. Nishiyama, A., Watanabe, M., Yang, Z., and Bu, J. (2002) Identity, distribution, and development of polydendrocytes: NG2-expressing glial cells, J Neurocytol 31, 437–455.

    Article  PubMed  CAS  Google Scholar 

  11. Eng, L. F. (1985) Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes, J Neuroimmunol 8, 203–214.

    Article  PubMed  CAS  Google Scholar 

  12. Kimelberg, H. K. (2004) The problem of astrocyte identity, Neurochem Int 45, 191–202.

    Article  PubMed  CAS  Google Scholar 

  13. Mishima, T., and Hirase, H. (2010) In vivo intracellular recording suggests that gray matter astrocytes in mature cerebral cortex and hippocampus are electrophysiologically homogeneous, J Neurosci 30, 3093–3100.

    Article  PubMed  CAS  Google Scholar 

  14. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. 1999. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716.

    Article  CAS  Google Scholar 

  15. Chojnacki, A. K., Mak, G. K., and Weiss, S. (2009) Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both?, Nat Rev Neurosci 10, 153–163.

    Google Scholar 

  16. Matyash, V., and Kettenmann, H. (2009) Heterogeneity in astrocyte morphology and physiology, Brain Res Rev.

    Google Scholar 

  17. Emsley, J. G., and Macklis, J. D. (2006) Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS, Neuron Glia Biol 2, 175–186.

    Article  PubMed  Google Scholar 

  18. Bushong, E. A., Martone, M. E., Jones, Y. Z., and Ellisman, M. H. (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains, J Neurosci 22, 183–192.

    PubMed  CAS  Google Scholar 

  19. Ogata, K., and Kosaka, T. (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus, Neuroscience 113, 221–233.

    Article  PubMed  CAS  Google Scholar 

  20. Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., Sanes, J. R., and Lichtman, J. W. (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system, Nature 450, 56–62.

    Article  PubMed  CAS  Google Scholar 

  21. Halassa, M. M., Fellin, T., Takano, H., Dong, J. H., and Haydon, P. G. (2007) Synaptic islands defined by the territory of a single astrocyte, J Neurosci 27, 6473–6477.

    Article  PubMed  CAS  Google Scholar 

  22. Oberheim, N. A., Tian, G. F., Han, X., Peng, W., Takano, T., Ransom, B., and Nedergaard, M. (2008) Loss of astrocytic domain organization in the epileptic brain, J Neurosci 28, 3264–3276.

    Article  PubMed  CAS  Google Scholar 

  23. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G. (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice, Science 274, 99–102.

    Article  PubMed  CAS  Google Scholar 

  24. Ransom, B. R., and Sontheimer, H. (1992) The neurophysiology of glial cells, J Clin Neurophysiol 9, 224–251.

    Article  PubMed  CAS  Google Scholar 

  25. Lin, S. C., and Bergles, D. E. (2004) Synaptic signaling between neurons and glia, Glia 47, 290–298.

    Article  PubMed  Google Scholar 

  26. Kuffler, S. W., Nicholls, J. G., and Orkand, R. K. (1966) Physiological properties of glial cells in the central nervous system of amphibia, J Neurophysiol 29, 768–787.

    PubMed  CAS  Google Scholar 

  27. Orkand, R. K., Nicholls, J. G., and Kuffler, S. W. (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia, J Neurophysiol 29, 788–806.

    PubMed  CAS  Google Scholar 

  28. Butt, A. M., and Kalsi, A. (2006) Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions, J Cell Mol Med 10, 33–44.

    Article  PubMed  CAS  Google Scholar 

  29. Seifert, G., Huttmann, K., Binder, D. K., Hartmann, C., Wyczynski, A., Neusch, C., and Steinhauser, C. (2009) Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit, J Neurosci 29, 7474–7488.

    Article  PubMed  CAS  Google Scholar 

  30. Kofuji, P., Ceelen, P., Zahs, K. R., Surbeck, L. W., Lester, H. A., and Newman, E. A. (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina, J Neurosci 20, 5733–5740.

    PubMed  CAS  Google Scholar 

  31. Neusch, C., Papadopoulos, N., Muller, M., Maletzki, I., Winter, S. M., Hirrlinger, J., Handschuh, M., Bahr, M., Richter, D. W., Kirchhoff, F., and Hulsmann, S. (2006) Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation, J Neurophysiol 95, 1843–1852.

    Article  PubMed  CAS  Google Scholar 

  32. Olsen, M. L., Campbell, S. L., and Sontheimer, H. (2007) Differential distribution of Kir4.1 in spinal cord astrocytes suggests regional differences in K+ homeostasis, J Neurophysiol 98, 786–793.

    Article  PubMed  CAS  Google Scholar 

  33. Muller, T., Fritschy, J. M., Grosche, J., Pratt, G. D., Mohler, H., and Kettenmann, H. (1994) Developmental regulation of voltage-gated K+ channel and GABAA receptor expression in Bergmann glial cells, J Neurosci 14, 2503–2514.

    PubMed  CAS  Google Scholar 

  34. Nishiyama, A., Lin, X. H., Giese, N., Heldin, C. H., and Stallcup, W. B. (1996) Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain, J Neurosci Res 43, 299–314.

    Article  PubMed  CAS  Google Scholar 

  35. Roy, N. S., Wang, S., Harrison-Restelli, C., Benraiss, A., Fraser, R. A., Gravel, M., Braun, P. E., and Goldman, S. A. (1999) Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter, J Neurosci 19, 9986–9995.

    PubMed  CAS  Google Scholar 

  36. Nishiyama, A., Komitova, M., Suzuki, R., and Zhu, X. (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity, Nat Rev Neurosci 10, 9–22.

    Article  PubMed  CAS  Google Scholar 

  37. Nunes, M. C., Roy, N. S., Keyoung, H. M., Goodman, R. R., McKhann, G., Jiang, L., Kang, J., Nedergaard, M., and Goldman, S. A. (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain, Nature Medicine 9, 439–447.

    Article  PubMed  CAS  Google Scholar 

  38. Sim, F. J., McClain, C. R., Schanz, S. J., Protack, T. L., Windrem, M. S., and Goldman, S. A. (2011) CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells, Nature biotechnology 29, 934–941.

    Google Scholar 

  39. Kukley, M., Capetillo-Zarate, E., and Dietrich, D. (2007) Vesicular glutamate release from axons in white matter, Nat Neurosci 10, 311–320.

    Article  PubMed  CAS  Google Scholar 

  40. Bergles, D. E., Roberts, J. D., Somogyi, P., and Jahr, C. E. (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus, Nature 405, 187–191.

    Article  PubMed  CAS  Google Scholar 

  41. Ge, W. P., Yang, X. J., Zhang, Z., Wang, H. K., Shen, W., Deng, Q. D., and Duan, S. (2006) Long-term potentiation of neuron-glia synapses mediated by Ca2+−permeable AMPA receptors, Science 312, 1533–1537.

    Article  PubMed  CAS  Google Scholar 

  42. Ziskin, J. L., Nishiyama, A., Rubio, M., Fukaya, M., and Bergles, D. E. (2007) Vesicular release of glutamate from unmyelinated axons in white matter, Nat Neurosci 10, 321–330.

    Article  PubMed  CAS  Google Scholar 

  43. Karadottir, R., Hamilton, N. B., Bakiri, Y., and Attwell, D. (2008) Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter, Nat Neurosci 11, 450–456.

    Article  PubMed  CAS  Google Scholar 

  44. Chittajallu, R., Aguirre, A., and Gallo, V. (2004) NG2-positive cells in the mouse white and grey matter display distinct physiological properties, J Physiol 561, 109–122.

    Article  PubMed  CAS  Google Scholar 

  45. Karram, K., Goebbels, S., Schwab, M., Jennissen, K., Seifert, G., Steinhauser, C., Nave, K. A., and Trotter, J. (2008) NG2-expressing cells in the nervous system revealed by the NG2-EYFP-knockin mouse, Genesis 46, 743–757.

    Article  PubMed  CAS  Google Scholar 

  46. Sim, F., Lang, J., Waldau, B., Roy, N., Schwartz, T., Chandross, K., Natesan, S., Merrill, J., and Goldman, S. A. (2006) Complementary patterns of gene expression by adult human oligodendrocyte progenitor cells and their white matter environment., Ann. Neurology 59, 763–779.

    Article  CAS  Google Scholar 

  47. Sim, F. J., Windrem, M. S., and Goldman, S. A. (2009) Fate determination of adult human glial progenitor cells, Neuron Glia Biol 5, 45–55.

    Article  PubMed  Google Scholar 

  48. Windrem, M. S., Nunes, M. C., Rashbaum, W. K., Schwartz, T. H., Goodman, R. A., McKhann, G., Roy, N. S., and Goldman, S. A. (2004) Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain, Nature Medicine 10, 93–97.

    Article  PubMed  CAS  Google Scholar 

  49. Dimou, L., Simon, C., Kirchhoff, F., Takebayashi, H., and Gotz, M. (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex, J Neurosci 28, 10434–10442.

    Article  PubMed  CAS  Google Scholar 

  50. Guo, F., Ma, J., McCauley, E., Bannerman, P., and Pleasure, D. (2009) Early postnatal proteolipid promoter-expressing progenitors produce multilineage cells in vivo, J Neurosci 29, 7256–7270.

    Article  PubMed  CAS  Google Scholar 

  51. Zhu, X., Bergles, D. E., and Nishiyama, A. (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes, Development 135, 145–157.

    Article  PubMed  CAS  Google Scholar 

  52. Zhu, X., Hill, R. A., and Nishiyama, A. (2008) NG2 cells generate oligodendrocytes and gray matter astrocytes in the spinal cord, Neuron Glia Biol 4, 19–26.

    Article  PubMed  Google Scholar 

  53. Rivers, L. E., Young, K. M., Rizzi, M., Jamen, F., Psachoulia, K., Wade, A., Kessaris, N., and Richardson, W. D. (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice, Nat Neurosci 11, 1392–1401.

    Article  PubMed  CAS  Google Scholar 

  54. Nedergaard, M., Takano, T., and Hansen, A. J. (2002) Beyond the role of glutamate as a neurotransmitter, Nat Rev Neurosci 3, 748–755.

    Article  PubMed  CAS  Google Scholar 

  55. Regan, M. R., Huang, Y. H., Kim, Y. S., Dykes-Hoberg, M. I., Jin, L., Watkins, A. M., Bergles, D. E., and Rothstein, J. D. (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS, J Neurosci 27, 6607–6619.

    Article  PubMed  CAS  Google Scholar 

  56. Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J. P., and Welty, D. F. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate, Neuron 16, 675–686.

    Article  PubMed  CAS  Google Scholar 

  57. Tanaka, K., Watase, K., Manabe, T., Yamada, K., Watanabe, M., Takahashi, K., Iwama, H., Nishikawa, T., Ichihara, N., Kikuchi, T., Okuyama, S., Kawashima, N., Hori, S., Takimoto, M., and Wada, K. (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1, Science 276, 1699–1702.

    Article  PubMed  CAS  Google Scholar 

  58. Macnab, L. T., and Pow, D. V. (2007) Expression of the exon 9-skipping form of EAAT2 in astrocytes of rats, Neuroscience 150, 705–711.

    Article  PubMed  CAS  Google Scholar 

  59. Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S., and Smith, S. J. (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling, Science 247, 470–473.

    Article  PubMed  CAS  Google Scholar 

  60. Shigetomi, E., Kracun, S., Sofroniew, M. V., and Khakh, B. S. (2010) A genetically targeted optical sensor to monitor calcium signals in astrocyte processes, Nat Neurosci 13, 759–766.

    Article  PubMed  CAS  Google Scholar 

  61. Cotrina, M. L., Lin, J. H., Alves-Rodrigues, A., Liu, S., Li, J., Azmi-Ghadimi, H., Kang, J., Naus, C. C., and Nedergaard, M. (1998) Connexins regulate calcium signaling by controlling ATP release, Proc Natl Acad Sci USA 95, 15735–15740.

    Article  PubMed  CAS  Google Scholar 

  62. Kimelberg, H. K., Anderson, E., and Kettenmann, H. (1990) Swelling-induced changes in electrophysiological properties of cultured astrocytes and oligodendrocytes. II. Whole-cell currents, Brain Res 529, 262–268.

    Article  PubMed  CAS  Google Scholar 

  63. Porter, J. T., and McCarthy, K. D. (1995) Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ, J Neurochem 65, 1515–1523.

    Article  PubMed  CAS  Google Scholar 

  64. Kang, J., Jiang, L., Goldman, S. A., and Nedergaard, M. (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission, Nat Neurosci 1, 683–692.

    Article  PubMed  CAS  Google Scholar 

  65. Duffy, S., and MacVicar, B. A. (1995) Adrenergic calcium signaling in astrocyte networks within the hippocampal slice, J Neurosci 15, 5535–5550.

    PubMed  CAS  Google Scholar 

  66. Cotrina, M. L., Lin, J. H., Lopez-Garcia, J. C., Naus, C. C., and Nedergaard, M. (2000) ATP-mediated glia signaling, J Neurosci 20, 2835–2844.

    PubMed  CAS  Google Scholar 

  67. Porter, J. T., and McCarthy, K. D. (1995) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i, Glia 13, 101–112.

    Article  PubMed  CAS  Google Scholar 

  68. Parri, H. R., and Crunelli, V. (2003) The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations, Neuroscience 120, 979–992.

    Article  PubMed  CAS  Google Scholar 

  69. Parri, H. R., Gould, T. M., and Crunelli, V. (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation, Nat Neurosci 4, 803–812.

    Article  PubMed  CAS  Google Scholar 

  70. Nett, W. J., Oloff, S. H., and McCarthy, K. D. (2002) Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity, J Neurophysiol 87, 528–537.

    PubMed  Google Scholar 

  71. Zur Nieden, R., and Deitmer, J. W. (2006) The role of metabotropic glutamate receptors for the generation of calcium oscillations in rat hippocampal astrocytes in situ, Cereb Cortex 16, 676–687.

    Article  PubMed  Google Scholar 

  72. Bekar, L. K., He, W., and Nedergaard, M. (2008) Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo, Cereb Cortex 18, 2789–2795.

    Article  PubMed  Google Scholar 

  73. Wang, X., Lou, N., Xu, Q., Tian, G. F., Peng, W. G., Han, X., Kang, J., Takano, T., and Nedergaard, M. (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo, Nat Neurosci 9, 816–823.

    Article  PubMed  CAS  Google Scholar 

  74. Schummers, J., Yu, H., and Sur, M. (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex, Science 320, 1638–1643.

    Article  PubMed  CAS  Google Scholar 

  75. Araque, A., Martin, E. D., Perea, G., Arellano, J. I., and Buno, W. (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices, J Neurosci 22, 2443–2450.

    PubMed  CAS  Google Scholar 

  76. Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B. L., Pozzan, T., and Volterra, A. (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes, Nature 391, 281–285.

    Article  PubMed  CAS  Google Scholar 

  77. Bowser, D. N., and Khakh, B. S. (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks, J Neurosci 24, 8606–8620.

    Article  PubMed  CAS  Google Scholar 

  78. Perea, G., and Araque, A. (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes, J Neurosci 25, 2192–2203.

    Article  PubMed  CAS  Google Scholar 

  79. Navarrete, M., and Araque, A. (2008) Endocannabinoids mediate neuron-astrocyte communication, Neuron 57, 883–893.

    Article  PubMed  CAS  Google Scholar 

  80. Porter, J. T., and McCarthy, K. D. (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals, J Neurosci 16, 5073–5081.

    PubMed  CAS  Google Scholar 

  81. Piet, R., and Jahr, C. E. (2007) Glutamatergic and purinergic receptor-mediated calcium transients in Bergmann glial cells, J Neurosci 27, 4027–4035.

    Article  PubMed  CAS  Google Scholar 

  82. Beierlein, M., and Regehr, W. G. (2006) Brief bursts of parallel fiber activity trigger calcium signals in bergmann glia, J Neurosci 26, 6958–6967.

    Article  PubMed  CAS  Google Scholar 

  83. Matyash, V., Filippov, V., Mohrhagen, K., and Kettenmann, H. (2001) Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice, Mol Cell Neurosci 18, 664–670.

    Article  PubMed  CAS  Google Scholar 

  84. Kulik, A., Haentzsch, A., Luckermann, M., Reichelt, W., and Ballanyi, K. (1999) Neuron-glia signaling via alpha(1) adrenoceptor-mediated Ca(2+) release in Bergmann glial cells in situ, J Neurosci 19, 8401–8408.

    PubMed  CAS  Google Scholar 

  85. Newman, E. A. (2005) Calcium increases in retinal glial cells evoked by light-induced neuronal activity, J Neurosci 25, 5502–5510.

    Article  PubMed  CAS  Google Scholar 

  86. Rieger, A., Deitmer, J. W., and Lohr, C. (2007) Axon-glia communication evokes calcium signaling in olfactory ensheathing cells of the developing olfactory bulb, Glia 55, 352–359.

    Article  PubMed  Google Scholar 

  87. Takata, N., and Hirase, H. (2008) Cortical layer 1 and layer 2/3 astrocytes exhibit distinct calcium dynamics in vivo, PLoS One 3, e2525.

    Article  PubMed  CAS  Google Scholar 

  88. Shigetomi, E., Bowser, D. N., Sofroniew, M. V., and Khakh, B. S. (2008) Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons, J Neurosci 28, 6659–6663.

    Article  PubMed  CAS  Google Scholar 

  89. Haas, B., Schipke, C. G., Peters, O., Sohl, G., Willecke, K., and Kettenmann, H. (2006) Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves, Cereb Cortex 16, 237–246.

    Article  PubMed  Google Scholar 

  90. Schipke, C. G., Boucsein, C., Ohlemeyer, C., Kirchhoff, F., and Kettenmann, H. (2002) Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices, FASEB J 16, 255–257.

    PubMed  CAS  Google Scholar 

  91. Beattie, E. C., Stellwagen, D., Morishita, W., Bresnahan, J. C., Ha, B. K., Von Zastrow, M., Beattie, M. S., and Malenka, R. C. (2002) Control of synaptic strength by glial TNFalpha, Science 295, 2282–2285.

    Article  PubMed  CAS  Google Scholar 

  92. Cotrina, M. L., Lin, J. H., and Nedergaard, M. (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling, J Neurosci 18, 8794–8804.

    PubMed  CAS  Google Scholar 

  93. Parpura, V., Basarsky, T. A., Liu, F., Jeftinija, K., Jeftinija, S., and Haydon, P. G. (1994) Glutamate-mediated astrocyte-neuron signalling, Nature 369, 744–747.

    Article  PubMed  CAS  Google Scholar 

  94. Zonta, M., Angulo, M. C., Gobbo, S., Rosengarten, B., Hossmann, K. A., Pozzan, T., and Carmignoto, G. (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation, Nat Neurosci 6, 43–50.

    Article  PubMed  CAS  Google Scholar 

  95. Schell, M. J., Molliver, M. E., and Snyder, S. H. (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release, Proc Natl Acad Sci USA 92, 3948–3952.

    Article  PubMed  CAS  Google Scholar 

  96. Stellwagen, D., and Malenka, R. C. (2006) Synaptic scaling mediated by glial TNF-alpha, Nature 440, 1054–1059.

    Article  PubMed  CAS  Google Scholar 

  97. Pascual, O., Casper, K. B., Kubera, C., Zhang, J., Revilla-Sanchez, R., Sul, J. Y., Takano, H., Moss, S. J., McCarthy, K., and Haydon, P. G. (2005) Astrocytic purinergic signaling coordinates synaptic networks, Science 310, 113–116.

    Article  PubMed  CAS  Google Scholar 

  98. Henneberger, C., Papouin, T., Oliet, S. H., and Rusakov, D. A. (2010) Long-term potentiation depends on release of D-serine from astrocytes, Nature 463, 232–236.

    Article  PubMed  CAS  Google Scholar 

  99. Tian, G. F., Azmi, H., Takano, T., Xu, Q., Peng, W., Lin, J., Oberheim, N., Lou, N., Wang, X., Zielke, H. R., Kang, J., and Nedergaard, M. (2005) An astrocytic basis of epilepsy, Nat Med 11, 973–981.

    PubMed  CAS  Google Scholar 

  100. Jourdain, P., Bergersen, L. H., Bhaukaurally, K., Bezzi, P., Santello, M., Domercq, M., Matute, C., Tonello, F., Gundersen, V., and Volterra, A. (2007) Glutamate exocytosis from astrocytes controls synaptic strength, Nat Neurosci 10, 331–339.

    Article  PubMed  CAS  Google Scholar 

  101. Liu, Q. S., Xu, Q., Kang, J., and Nedergaard, M. (2004) Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission, Neuron Glia Biol 1, 307–316.

    Article  PubMed  CAS  Google Scholar 

  102. Liu, Q. S., Xu, Q., Arcuino, G., Kang, J., and Nedergaard, M. (2004) Astrocyte-mediated activation of neuronal kainate receptors, Proc Natl Acad Sci USA 101, 3172–3177.

    Article  PubMed  CAS  Google Scholar 

  103. Brockhaus, J., and Deitmer, J. W. (2002) Long-lasting modulation of synaptic input to Purkinje neurons by Bergmann glia stimulation in rat brain slices, J Physiol 545, 581–593.

    Article  PubMed  CAS  Google Scholar 

  104. Lee, S., Yoon, B. E., Berglund, K., Oh, S. J., Park, H., Shin, H. S., Augustine, G. J., and Lee, C. J. (2010) Channel-mediated tonic GABA release from glia, Science 330, 790–796.

    Article  PubMed  CAS  Google Scholar 

  105. Kozlov, A. S., Angulo, M. C., Audinat, E., and Charpak, S. (2006) Target cell-specific modulation of neuronal activity by astrocytes, Proc Natl Acad Sci USA 103, 10058–10063.

    Article  PubMed  CAS  Google Scholar 

  106. Newman, E. A., and Zahs, K. R. (1998) Modulation of neuronal activity by glial cells in the retina, J Neurosci 18, 4022–4028.

    PubMed  CAS  Google Scholar 

  107. Newman, E. A. (2003) Glial cell inhibition of neurons by release of ATP, J Neurosci 23, 1659–1666.

    PubMed  CAS  Google Scholar 

  108. Agulhon, C., Fiacco, T. A., and McCarthy, K. D. (2010) Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling, Science 327, 1250–1254.

    Article  PubMed  CAS  Google Scholar 

  109. Fiacco, T. A., Agulhon, C., Taves, S. R., Petravicz, J., Casper, K. B., Dong, X., Chen, J., and McCarthy, K. D. (2007) Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity, Neuron 54, 611–626.

    Article  PubMed  CAS  Google Scholar 

  110. Petravicz, J., Fiacco, T. A., and McCarthy, K. D. (2008) Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity, J Neurosci 28, 4967–4973.

    Article  PubMed  CAS  Google Scholar 

  111. Rouach, N., Avignone, E., Meme, W., Koulakoff, A., Venance, L., Blomstrand, F., and Giaume, C. (2002) Gap junctions and connexin expression in the normal and pathological central nervous system, Biol Cell 94, 457–475.

    Article  PubMed  CAS  Google Scholar 

  112. Houades, V., Rouach, N., Ezan, P., Kirchhoff, F., Koulakoff, A., and Giaume, C. (2006) Shapes of astrocyte networks in the juvenile brain, Neuron Glia Biol 2, 3–14.

    Article  PubMed  Google Scholar 

  113. Houades, V., Koulakoff, A., Ezan, P., Seif, I., and Giaume, C. (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex, J Neurosci 28, 5207–5217.

    Article  PubMed  CAS  Google Scholar 

  114. Muller, T., Moller, T., Neuhaus, J., and Kettenmann, H. (1996) Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation, Glia 17, 274–284.

    Article  PubMed  CAS  Google Scholar 

  115. Wiencken-Barger, A. E., Djukic, B., Casper, K. B., and McCarthy, K. D. (2007) A role for Connexin43 during neurodevelopment, Glia 55, 675–686.

    Article  PubMed  Google Scholar 

  116. Theis, M., Jauch, R., Zhuo, L., Speidel, D., Wallraff, A., Doring, B., Frisch, C., Sohl, G., Teubner, B., Euwens, C., Huston, J., Steinhauser, C., Messing, A., Heinemann, U., and Willecke, K. (2003) Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43, J Neurosci 23, 766–776.

    PubMed  CAS  Google Scholar 

  117. Wallraff, A., Kohling, R., Heinemann, U., Theis, M., Willecke, K., and Steinhauser, C. (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus, J Neurosci 26, 5438–5447.

    Article  PubMed  CAS  Google Scholar 

  118. Takano, T., Kang, J., Jaiswal, J. K., Simon, S. M., Lin, J. H., Yu, Y., Li, Y., Yang, J., Dienel, G., Zielke, H. R., and Nedergaard, M. (2005) Receptor-mediated glutamate release from volume sensitive channels in astrocytes, Proc Natl Acad Sci USA 102, 16466–16471.

    Article  PubMed  CAS  Google Scholar 

  119. Ye, Z. C., Oberheim, N., Kettenmann, H., and Ransom, B. R. (2009) Pharmacological “cross-inhibition” of connexin hemichannels and swelling activated anion channels, Glia 57, 258–269.

    Article  PubMed  Google Scholar 

  120. Ye, Z. C., Wyeth, M. S., Baltan-Tekkok, S., and Ransom, B. R. (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release, J Neurosci 23, 3588–3596.

    PubMed  CAS  Google Scholar 

  121. Hewett, J. A. (2009) Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system, J Neurochem 110, 1717–1736.

    Article  PubMed  CAS  Google Scholar 

  122. Silver, J., and Miller, J. H. (2004) Regeneration beyond the glial scar, Nat Rev Neurosci 5, 146–156.

    Article  PubMed  CAS  Google Scholar 

  123. Pekny, M., and Nilsson, M. (2005) Astrocyte activation and reactive gliosis, Glia 50, 427–434.

    Article  PubMed  Google Scholar 

  124. Benediktsson, A. M., Schachtele, S. J., Green, S. H., and Dailey, M. E. (2005) Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures, J Neurosci Methods 141, 41–53.

    Article  PubMed  Google Scholar 

  125. Hirrlinger, J., Hulsmann, S., and Kirchhoff, F. (2004) Astroglial processes show spontaneous motility at active synaptic terminals in situ, Eur J Neurosci 20, 2235–2239.

    Article  PubMed  Google Scholar 

  126. Nishida, H., and Okabe, S. (2007) Direct astrocytic contacts regulate local maturation of dendritic spines, J Neurosci 27, 331–340.

    Article  PubMed  CAS  Google Scholar 

  127. Oliet, S. H., Piet, R., and Poulain, D. A. (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons, Science 292, 923–926.

    Article  PubMed  CAS  Google Scholar 

  128. Piet, R., Vargova, L., Sykova, E., Poulain, D. A., and Oliet, S. H. (2004) Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk, Proc Natl Acad Sci USA 101, 2151–2155.

    Article  PubMed  CAS  Google Scholar 

  129. Levison, S. W., Young, G. M., and Goldman, J. E. (1999) Cycling cells in the adult rat neocortex preferentially generate oligodendroglia, J Neurosci Res 57, 435–446.

    Article  PubMed  CAS  Google Scholar 

  130. Goldman, S. A., Zukhar, A., Barami, K., Mikawa, T., and Niedzwiecki, D. (1996) Ependymal/subependymal zone cells of postnatal and adult songbird brain generate both neurons and nonneuronal siblings in vitro and in vivo, J Neurobiol 30, 505–520.

    Article  PubMed  CAS  Google Scholar 

  131. Gray, G., and Sanes, J. (1992) Lineage of radial glia in the chicken optic tectum, Development 114, 271–283.

    PubMed  CAS  Google Scholar 

  132. Malatesta, P., Hack, M. A., Hartfuss, E., Kettenmann, H., Klinkert, W., Kirchhoff, F., and Gotz, M. (2003) Neuronal or glial progeny: regional differences in radial glia fate, Neuron 37, 751–764.

    Article  PubMed  CAS  Google Scholar 

  133. Goldman, J. E. (1995) Lineage, migration, and fate determination of postnatal subventricular zone cells in the mammalian CNS, J Neurooncol 24, 61–64.

    Article  PubMed  CAS  Google Scholar 

  134. Marshall, C. A., and Goldman, J. E. (2002) Subpallial dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter, J Neurosci 22, 9821–9830.

    PubMed  CAS  Google Scholar 

  135. Beckervordersandforth, R., Tripathi, P., Ninkovic, J., Bayam, E., Lepier, A., Stempfhuber, B., Kirchhoff, F., Hirrlinger, J., Haslinger, A., Lie, D. C., Beckers, J., Yoder, B., Irmler, M., and Gotz, M. (2010) In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells, Cell Stem Cell 7, 744–758.

    Article  PubMed  CAS  Google Scholar 

  136. Ono, K., Takebayashi, H., Ikeda, K., Furusho, M., Nishizawa, T., Watanabe, K., and Ikenaka, K. (2008) Regional- and temporal-dependent changes in the differentiation of Olig2 progenitors in the forebrain, and the impact on astrocyte development in the dorsal pallium, Dev Biol 320, 456–468.

    Article  PubMed  CAS  Google Scholar 

  137. Zhou, Q., and Anderson, D. J. (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification, Cell 109, 61–73.

    Article  PubMed  CAS  Google Scholar 

  138. Zhou, Q., Wang, S., and Anderson, D. J. (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors, Neuron 25, 331–343.

    Article  PubMed  CAS  Google Scholar 

  139. Masahira, N., Takebayashi, H., Ono, K., Watanabe, K., Ding, L., Furusho, M., Ogawa, Y., Nabeshima, Y., Alvarez-Buylla, A., Shimizu, K., and Ikenaka, K. (2006) Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells, Dev Biol 293, 358–369.

    Article  PubMed  CAS  Google Scholar 

  140. Hochstim, C., Deneen, B., Lukaszewicz, A., Zhou, Q., and Anderson, D. J. (2008) Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code, Cell 133, 510–522.

    Article  PubMed  CAS  Google Scholar 

  141. Retzius, G. (1894) Die neuroglia des Gehirns beim Menschen und bei Saeugethieren, Biol Untersuchungen 6, 1–28.

    Google Scholar 

  142. Colombo, J. A., and Reisin, H. D. (2004) Interlaminar astroglia of the cerebral cortex: a marker of the primate brain, Brain Res 1006, 126–131.

    Article  PubMed  CAS  Google Scholar 

  143. Colombo, J. A., Yanez, A., Puissant, V., and Lipina, S. (1995) Long, interlaminar astroglial cell processes in the cortex of adult monkeys, J Neurosci Res 40, 551–556.

    Article  PubMed  CAS  Google Scholar 

  144. Colombo, J. A. (1996) Interlaminar astroglial processes in the cerebral cortex of adult monkeys but not of adult rats, Acta Anat (Basel) 155, 57–62.

    Article  CAS  Google Scholar 

  145. Garcia-Marin, V., Garcia-Lopez, P., and Freire, M. (2007) Cajal’s contributions to glia research, Trends Neurosci 30, 479–487.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work described in the authors’ labs was supported by grants from NINDS, as well as from the Adelson Medical Research Foundation, the Mathers Charitable foundation, the National Multiple Sclerosis Society, the Department of Defence, and the New York State Stem Cell Research Program (NYSTEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Goldman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Oberheim, N.A., Goldman, S.A., Nedergaard, M. (2012). Heterogeneity of Astrocytic Form and Function. In: Milner, R. (eds) Astrocytes. Methods in Molecular Biology, vol 814. Humana Press. https://doi.org/10.1007/978-1-61779-452-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-452-0_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-451-3

  • Online ISBN: 978-1-61779-452-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics