Isolation of Fetal Gonads from Embryos of Timed-Pregnant Mice for Morphological and Molecular Studies

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 825)

Abstract

Gonadal sex differentiation is an important developmental process, in which a bipotential primordial gonad undergoes two distinct pathways, i.e., testicular and ovarian differentiation, dependent on its genetic sex. Techniques of isolating fetal gonads at various developmental stages are valuable for studies on the molecular events involved in cell-fate determination, sex-specific somatic and germ-cell differentiation and structural organization. Here we describe various procedures for isolation of embryonic gonads at different developmental stages from embryos of timed-pregnant mice. The isolated fetal gonads can be used for a variety of studies, such as organ culture, gene and protein expression. As examples of applications, we describe the immunofluorescence detection of SOX9 expression in gonadal tissue sections and microRNAs profiling/expression in fetal gonads at a critical stage for sex determination.

Key words

Timed-pregnant mice Fetal gonad Mesonephros Testis cords Immunofluorescence microRNAs profiling 

References

  1. 1.
    Wilhelm D, Palmer S, Koopman P (2007) Sex determination and gonadal development in mammals. Physiol Rev 87, 128.PubMedCrossRefGoogle Scholar
  2. 2.
    Sekido R, Lovell-Badge R (2009) Sex determination and SRY: down to a wink and a nudge? Trends Genet 25, 1929.PubMedCrossRefGoogle Scholar
  3. 3.
    Taketo T, Lee CH, Zhang J, Li Y, Lee CY, Lau YF (2005) Expression of SRY proteins in both normal and sex-reversed XY fetal mouse gonads. Dev Dyn 233, 612622.PubMedCrossRefGoogle Scholar
  4. 4.
    Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453, 930934.PubMedCrossRefGoogle Scholar
  5. 5.
    Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351, 117121.PubMedCrossRefGoogle Scholar
  6. 6.
    Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y, Kojima A, Yoshitome A, Yamawaki K, Amagai M, Inoue A, Oshima T, Kakitani M (2008) R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet 17, 12781291.PubMedCrossRefGoogle Scholar
  7. 7.
    Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, Chaboissier MC, Poulat F, Behringer RR, Lovell-Badge R, Capel B (2006) Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4, e187.PubMedCrossRefGoogle Scholar
  8. 8.
    Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, Treier AC, Klugmann C, Klasen C, Holter, NI, Riethmacher D, Schutz G, Cooney AJ, Lovell-Badge R, Treier M (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 11301142.PubMedCrossRefGoogle Scholar
  9. 9.
    Taketo TTR, Adeyemo O, Koide SS (1984) Influence of adenosine 3′,5′-cyclic monophosphate analogs on testicular organizaion of fetal mouse gonads in virtro. Biol Reprod 30, 189198.PubMedCrossRefGoogle Scholar
  10. 10.
    Capel B, Batchvarov J (2008) Preparing Recombinant Gonad Organ Cultures. Cold Spring Harb Protoc Google Scholar
  11. 11.
    Li Y, Yue L, Taketo T, Lau YF (2003) Protein transduction as a strategy for evaluating important factors in mammalian sex determination and differentiation. Cytogenet Genome Res 101, 237241.PubMedCrossRefGoogle Scholar
  12. 12.
    Capel B, Albrecht KH, Washburn LL, Eicher EM (1999) Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech Dev 84, 127131.PubMedCrossRefGoogle Scholar
  13. 13.
    Nef S, Schaad O, Stallings NR, Cederroth CR, Pitetti JL, Schaer G, Malki S, Dubois-Dauphin M, Boizet-Bonhoure B, Descombes P, Parker KL, Vassalli JD (2005) Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Dev Biol 287, 361377.PubMedCrossRefGoogle Scholar
  14. 14.
    Beverdam A, Koopman P (2006) Expression profiling of purified mouse gonadal somatic cells during the critical time window of sex determination reveals novel candidate genes for human sexual dysgenesis syndromes. Hum Mol Genet 15, 417431.PubMedCrossRefGoogle Scholar
  15. 15.
    Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M, Noce T (2000) Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech Dev 93, 139149.PubMedCrossRefGoogle Scholar
  16. 16.
    Shah AA, Meese E, Blin N (2010) Profiling of regulatory microRNA transcriptomes in various biological processes: a review. J Appl Genet 51, 501507.PubMedCrossRefGoogle Scholar
  17. 17.
    Kim GJ, Georg I, Scherthan H, Merkenschlager M, Guillou F, Scherer G, Barrionuevo F (2010) Dicer is required for Sertoli cell function and survival. Int J Dev Biol 54, 867875.PubMedCrossRefGoogle Scholar
  18. 18.
    Bannister SC, Tizard ML, Doran TJ, Sinclair AH, Smith CA (2009) Sexually dimorphic microRNA expression during chicken embryonic gonadal development. Biol Reprod 81, 165176.PubMedCrossRefGoogle Scholar
  19. 19.
    O’Day E, Lal A (2010) MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 12, 201.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu L, Chen L, Xu Y, Li R, Du X (2010) microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochem Biophys Res Commun 400, 236240.PubMedCrossRefGoogle Scholar
  21. 21.
    Ghosh T, Soni K, Scaria V, Halimani M, Bhattacharjee C, Pillai B (2008) MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic {beta}-actin gene. Nucleic Acids Res 36, 63186332.PubMedCrossRefGoogle Scholar
  22. 22.
    Giraud-Triboult K, Rochon-Beaucourt C, Nissan X, Champon B, Aubert S, Pietu G (2011) Combined mRNA and microRNA profiling reveals that miR-148a and miR-20b control human mesenchymal stem cell phenotype via EPAS1. Physiol Genomics 43,77–86.PubMedCrossRefGoogle Scholar
  23. 23.
    Castilla MA, Moreno-Bueno G, Romero-Perez L, De Vijver KV, Biscuola M, Lopez-Garcia MA, Prat J, Matias-Guiu X, Cano A, Oliva E, Palacios J (2011) Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol 223, 72–80.PubMedCrossRefGoogle Scholar
  24. 24.
    Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K (2010) Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39, 761772.PubMedCrossRefGoogle Scholar
  25. 25.
    Jung YH, Gupta MK, Shin JY, Uhm SJ, Lee HT (2010) MicroRNA signature in testes-derived male germ-line stem cells. Mol Hum Reprod 16, 804810.PubMedCrossRefGoogle Scholar
  26. 26.
    Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J, Willis MS, Selzman CH, Wang DZ (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119, 27722786.PubMedCrossRefGoogle Scholar
  27. 27.
    van Rooij E, Quiat, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17, 662673.PubMedCrossRefGoogle Scholar
  28. 28.
    Bouma GJ, Washburn LL, Albrecht KH, Eicher EM (2007) Correct dosage of Fog2 and Gata4 transcription factors is critical for fetal testis development in mice. Proc Natl Acad Sci USA 104, 1499414999.PubMedCrossRefGoogle Scholar
  29. 29.
    Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12, 399408.PubMedCrossRefGoogle Scholar
  30. 30.
    Gao FB (2010) Context-dependent functions of specific microRNAs in neuronal development. Neural Dev 5, 25.PubMedCrossRefGoogle Scholar
  31. 31.
    Farrell BC, Power EM, Dermott KW (2011) Developmentally regulated expression of Sox9 and microRNAs 124,128 and 23 in neuroepithelial stem cells in the developing spinal cord. Int J Dev Neurosci 29, 31–36.PubMedCrossRefGoogle Scholar
  32. 32.
    Sirotkin AV, Laukova M, Ovcharenko D, Brenaut P, Mlyncek M (2009) Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 223, 49–56.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Medicine, VA Medical CenterUniversity of CaliforniaSan FranciscoUSA
  2. 2.Departments of Surgery, Biology, and Obstetrics and GynecologyMcGill University, Royal Victoria HospitalMontrealCanada

Personalised recommendations