Skip to main content
Book cover

mTOR pp 125–169Cite as

Evaluation of Rapamycin-Induced Cell Death

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 821))

Abstract

Mammalian target of rapamycin (mTOR) is an evolutionarily conserved kinase that integrates signals from nutrients and growth factors for the coordinate regulation of many cellular processes, including proliferation and cell death. Constitutive mTOR signaling characterizes multiple human malignancies, and pharmacological inhibitors of mTOR such as the immunosuppressant rapamycin and some of its nonimmunosuppressive derivatives not only have been ascribed with promising anticancer properties in vitro and in vivo but are also being extensively evaluated in clinical trials. mTOR inhibition rapidly leads to the activation of autophagy, which most often exerts prosurvival effects, although in some cases it accompanies cell death. Thus, depending on the specific experimental setting (cell type, concentration, stimulation time, and presence of concurrent stimuli), rapamycin can activate/favor a wide spectrum of cellular responses/phenotypes, ranging from adaptation to stress and survival to cell death. The (at least partial) overlap among the biochemical and morphological responses triggered by rapamycin considerably complicates the study of cell death-associated variables. Moreover, rapamycin presumably triggers acute cell death mainly via off-target mechanisms. Here, we describe a set of assays that can be employed for the routine quantification of rapamycin-induced cell death in vitro, as well as a set of guidelines that should be applied for their correct interpretation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

AnnV:

Annexin V

ATCC:

American type culture collection

BSA:

Bovine serum albumin

CRTC1:

CREB-regulated transcription coactivator 1

CV:

Crystal violet

DAPI:

4′,6-Diamidino-2-phenylindole dihydrochloride

dH2O:

Deionized water

DiOC6(3):

3,3′-Dihexiloxalocarbocyanine iodide

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

EGFR:

Epidermal growth factor receptor

FITC:

Fluorescein isothiocyanate

FSC:

Forward scatter

HBSS:

Hank’s balanced salt solution

IARC:

International Agency for Research on Cancer

IC50 :

Half maximal inhibitory concentration

IM:

Inner mitochondrial membrane

IMS:

Mitochondrial intermembrane space

ψ m :

Mitochondrial transmembrane potential

MMP:

Mitochondrial membrane permeabilization

mTOR:

Mammalian target of rapamycin

NTP:

National Toxicology Program

OM:

Outer mitochondrial membrane

OSHA:

Occupational Safety and Health Administration

PBS:

Phosphate-buffered saline

PFA:

Paraformaldehyde

PI:

Propidium iodide

PI3K:

Phosphoinositide 3-kinase

PLSCR1:

Phospholipid scramblase 1

PMSF:

Phenylmethylsulfonyl fluoride

PS:

Phosphatidylserine

ROS:

Reactive oxygen species

RT:

Room temperature

SDS:

Sodium dodecylsulfate

SF:

Surviving fraction

siRNA:

Small interfering RNA

SSC:

Side scatter

TBS:

Tris-buffered saline

TMRM:

Tetramethylrhodamine methyl ester

TORC:

TOR complex

References

  1. Sarbassov, D. D., Ali, S. M., and Sabatini, D. M. (2005) Growing roles for the mTOR pathway, Curr Opin Cell Biol 17, 596–603.

    Article  PubMed  CAS  Google Scholar 

  2. Guertin, D. A., and Sabatini, D. M. (2005) An expanding role for mTOR in cancer, Trends Mol Med 11, 353–361.

    Article  PubMed  CAS  Google Scholar 

  3. Law, B. K. (2005) Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol 56, 47–60.

    Article  PubMed  Google Scholar 

  4. Faivre, S., Kroemer, G., and Raymond, E. (2006) Current development of mTOR inhibitors as anticancer agents, Nat Rev Drug Discov 5, 671–688.

    Article  PubMed  CAS  Google Scholar 

  5. Decker, T., Sandherr, M., Goetze, K., Oelsner, M., Ringshausen, I., and Peschel, C. (2009) A pilot trial of the mTOR (mammalian target of rapamycin) inhibitor RAD001 in patients with advanced B-CLL, Ann Hematol 88, 221–227.

    Article  PubMed  CAS  Google Scholar 

  6. Kapoor, A., and Figlin, R. A. (2009) Targeted inhibition of mammalian target of rapamycin for the treatment of advanced renal cell carcinoma, Cancer 115, 3618–3630.

    Article  PubMed  CAS  Google Scholar 

  7. Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., Oppliger, W., Jenoe, P., and Hall, M. N. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control, Mol Cell 10, 457–468.

    Article  PubMed  CAS  Google Scholar 

  8. Bhaskar, P. T., and Hay, N. (2007) The two TORCs and Akt, Dev Cell 12, 487–502.

    Article  PubMed  CAS  Google Scholar 

  9. Sarbassov, D. D., Ali, S. M., Sengupta, S., Sheen, J. H., Hsu, P. P., Bagley, A. F., Markhard, A. L., and Sabatini, D. M. (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB, Mol Cell 22, 159–168.

    Article  PubMed  CAS  Google Scholar 

  10. Zeng, Z., Sarbassov dos, D., Samudio, I. J., Yee, K. W., Munsell, M. F., Ellen Jackson, C., Giles, F. J., Sabatini, D. M., Andreeff, M., and Konopleva, M. (2007) Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML, Blood 109, 3509–3512.

    Article  PubMed  CAS  Google Scholar 

  11. Castedo, M., Ferri, K. F., and Kroemer, G. (2002) Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic, Cell Death Differ 9, 99–100.

    Article  PubMed  CAS  Google Scholar 

  12. Galluzzi, L., Maiuri, M. C., Vitale, I., Zischka, H., Castedo, M., Zitvogel, L., and Kroemer, G. (2007) Cell death modalities: classification and pathophysiological implications, Cell Death Differ 14, 1237–1243.

    Article  PubMed  CAS  Google Scholar 

  13. Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., El-Deiry, W. S., Golstein, P., Green, D. R., Hengartner, M., Knight, R. A., Kumar, S., Lipton, S. A., Malorni, W., Nunez, G., Peter, M. E., Tschopp, J., Yuan, J., Piacentini, M., Zhivotovsky, B., and Melino, G. (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009, Cell Death Differ 16, 3–11.

    Article  PubMed  CAS  Google Scholar 

  14. Garrido, C., Galluzzi, L., Brunet, M., Puig, P. E., Didelot, C., and Kroemer, G. (2006) Mechanisms of cytochrome c release from mitochondria, Cell Death Differ 13, 1423–1433.

    Article  PubMed  CAS  Google Scholar 

  15. Kroemer, G., Galluzzi, L., and Brenner, C. (2007) Mitochondrial membrane permeabilization in cell death, Physiol Rev 87, 99–163.

    Article  PubMed  CAS  Google Scholar 

  16. Klionsky, D. J., Abeliovich, H., Agostinis, P., Agrawal, D. K., Aliev, G., Askew, D. S., Baba, M., Baehrecke, E. H., Bahr, B. A., Ballabio, A., Bamber, B. A., Bassham, D. C., Bergamini, E., Bi, X., Biard-Piechaczyk, M., Blum, J. S., Bredesen, D. E., Brodsky, J. L., Brumell, J. H., Brunk, U. T., Bursch, W., Camougrand, N., Cebollero, E., Cecconi, F., Chen, Y., Chin, L. S., Choi, A., Chu, C. T., Chung, J., Clarke, P. G., Clark, R. S., Clarke, S. G., Clave, C., Cleveland, J. L., Codogno, P., Colombo, M. I., Coto-Montes, A., Cregg, J. M., Cuervo, A. M., Debnath, J., Demarchi, F., Dennis, P. B., Dennis, P. A., Deretic, V., Devenish, R. J., Di Sano, F., Dice, J. F., Difiglia, M., Dinesh-Kumar, S., Distelhorst, C. W., Djavaheri-Mergny, M., Dorsey, F. C., Droge, W., Dron, M., Dunn, W. A., Jr., Duszenko, M., Eissa, N. T., Elazar, Z., Esclatine, A., Eskelinen, E. L., Fesus, L., Finley, K. D., Fuentes, J. M., Fueyo, J., Fujisaki, K., Galliot, B., Gao, F. B., Gewirtz, D. A., Gibson, S. B., Gohla, A., Goldberg, A. L., Gonzalez, R., Gonzalez-Estevez, C., Gorski, S., Gottlieb, R. A., Haussinger, D., He, Y. W., Heidenreich, K., Hill, J. A., Hoyer-Hansen, M., Hu, X., Huang, W. P., Iwasaki, A., Jaattela, M., Jackson, W. T., Jiang, X., Jin, S., Johansen, T., Jung, J. U., Kadowaki, M., Kang, C., Kelekar, A., Kessel, D. H., Kiel, J. A., Kim, H. P., Kimchi, A., Kinsella, T. J., Kiselyov, K., Kitamoto, K., Knecht, E., Komatsu, M., Kominami, E., Kondo, S., Kovacs, A. L., Kroemer, G., Kuan, C. Y., Kumar, R., Kundu, M., Landry, J., Laporte, M., Le, W., Lei, H. Y., Lenardo, M. J., Levine, B., Lieberman, A., Lim, K. L., Lin, F. C., Liou, W., Liu, L. F., Lopez-Berestein, G., Lopez-Otin, C., Lu, B., Macleod, K. F., Malorni, W., Martinet, W., Matsuoka, K., Mautner, J., Meijer, A. J., Melendez, A., Michels, P., Miotto, G., Mistiaen, W. P., Mizushima, N., Mograbi, B., Monastyrska, I., Moore, M. N., Moreira, P. I., Moriyasu, Y., Motyl, T., Munz, C., Murphy, L. O., Naqvi, N. I., Neufeld, T. P., Nishino, I., Nixon, R. A., Noda, T., Nurnberg, B., Ogawa, M., Oleinick, N. L., Olsen, L. J., Ozpolat, B., Paglin, S., Palmer, G. E., Papassideri, I., Parkes, M., Perlmutter, D. H., Perry, G., Piacentini, M., Pinkas-Kramarski, R., Prescott, M., Proikas-Cezanne, T., Raben, N., Rami, A., Reggiori, F., Rohrer, B., Rubinsztein, D. C., Ryan, K. M., Sadoshima, J., Sakagami, H., Sakai, Y., Sandri, M., Sasakawa, C., Sass, M., Schneider, C., Seglen, P. O., Seleverstov, O., Settleman, J., Shacka, J. J., Shapiro, I. M., Sibirny, A., Silva-Zacarin, E. C., Simon, H. U., Simone, C., Simonsen, A., Smith, M. A., Spanel-Borowski, K., Srinivas, V., Steeves, M., Stenmark, H., Stromhaug, P. E., Subauste, C. S., Sugimoto, S., Sulzer, D., Suzuki, T., Swanson, M. S., Tabas, I., Takeshita, F., Talbot, N. J., Talloczy, Z., Tanaka, K., Tanida, I., Taylor, G. S., Taylor, J. P., Terman, A., Tettamanti, G., Thompson, C. B., Thumm, M., Tolkovsky, A. M., Tooze, S. A., Truant, R., Tumanovska, L. V., Uchiyama, Y., Ueno, T., Uzcategui, N. L., van der Klei, I., Vaquero, E. C., Vellai, T., Vogel, M. W., Wang, H. G., Webster, P., Wiley, J. W., Xi, Z., Xiao, G., Yahalom, J., Yang, J. M., Yap, G., Yin, X. M., Yoshimori, T., Yu, L., Yue, Z., Yuzaki, M., Zabirnyk, O., Zheng, X., Zhu, X., and Deter, R. L. (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes, Autophagy 4, 151–175.

    PubMed  CAS  Google Scholar 

  17. Golstein, P., and Kroemer, G. (2005) Redundant cell death mechanisms as relics and backups, Cell Death Differ 12 Suppl 2, 1490–1496.

    Article  PubMed  CAS  Google Scholar 

  18. Golstein, P., and Kroemer, G. (2007) Cell death by necrosis: towards a molecular definition, Trends Biochem Sci 32, 37–43.

    Article  PubMed  CAS  Google Scholar 

  19. Galluzzi, L., Blomgren, K., and Kroemer, G. (2009) Mitochondrial membrane permeabilization in neuronal injury, Nat Rev Neurosci 10, 481–494.

    Article  PubMed  CAS  Google Scholar 

  20. Galluzzi, L., Vicencio, J. M., Kepp, O., Tasdemir, E., Maiuri, M. C., and Kroemer, G. (2008) To die or not to die: that is the autophagic question, Curr Mol Med 8, 78–91.

    Article  PubMed  CAS  Google Scholar 

  21. Kroemer, G., and Levine, B. (2008) Autophagic cell death: the story of a misnomer, Nat Rev Mol Cell Biol 9, 1004–1010.

    Article  PubMed  CAS  Google Scholar 

  22. Boya, P., Gonzalez-Polo, R. A., Casares, N., Perfettini, J. L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T., Pierron, G., Codogno, P., and Kroemer, G. (2005) Inhibition of macroautophagy triggers apoptosis, Mol Cell Biol 25, 1025–1040.

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez-Polo, R. A., Boya, P., Pauleau, A. L., Jalil, A., Larochette, N., Souquere, S., Eskelinen, E. L., Pierron, G., Saftig, P., and Kroemer, G. (2005) The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death, J Cell Sci 118, 3091–3102.

    Article  PubMed  CAS  Google Scholar 

  24. Galluzzi, L., Kepp, O., and Kroemer, G. (2009) RIP kinases initiate programmed necrosis, J Mol Cell Biol

    Google Scholar 

  25. Galluzzi, L., and Kroemer, G. (2008) Necroptosis: a specialized pathway of programmed necrosis, Cell 135, 1161–1163.

    Article  PubMed  CAS  Google Scholar 

  26. Galluzzi, L., Aaronson, S. A., Abrams, J., Alnemri, E. S., Andrews, D. W., Baehrecke, E. H., Bazan, N. G., Blagosklonny, M. V., Blomgren, K., Borner, C., Bredesen, D. E., Brenner, C., Castedo, M., Cidlowski, J. A., Ciechanover, A., Cohen, G. M., De Laurenzi, V., De Maria, R., Deshmukh, M., Dynlacht, B. D., El-Deiry, W. S., Flavell, R. A., Fulda, S., Garrido, C., Golstein, P., Gougeon, M. L., Green, D. R., Gronemeyer, H., Hajnoczky, G., Hardwick, J. M., Hengartner, M. O., Ichijo, H., Jaattela, M., Kepp, O., Kimchi, A., Klionsky, D. J., Knight, R. A., Kornbluth, S., Kumar, S., Levine, B., Lipton, S. A., Lugli, E., Madeo, F., Malomi, W., Marine, J. C., Martin, S. J., Medema, J. P., Mehlen, P., Melino, G., Moll, U. M., Morselli, E., Nagata, S., Nicholson, D. W., Nicotera, P., Nunez, G., Oren, M., Penninger, J., Pervaiz, S., Peter, M. E., Piacentini, M., Prehn, J. H., Puthalakath, H., Rabinovich, G. A., Rizzuto, R., Rodrigues, C. M., Rubinsztein, D. C., Rudel, T., Scorrano, L., Simon, H. U., Steller, H., Tschopp, J., Tsujimoto, Y., Vandenabeele, P., Vitale, I., Vousden, K. H., Youle, R. J., Yuan, J., Zhivotovsky, B., and Kroemer, G. (2009) Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes, Cell Death Differ 16, 1093–1107.

    Article  PubMed  CAS  Google Scholar 

  27. Galluzzi, L., Joza, N., Tasdemir, E., Maiuri, M. C., Hengartner, M., Abrams, J. M., Tavernarakis, N., Penninger, J., Madeo, F., and Kroemer, G. (2008) No death without life: vital functions of apoptotic effectors, Cell Death Differ 15, 1113–1123.

    Article  PubMed  CAS  Google Scholar 

  28. Ferri, K. F., and Kroemer, G. (2001) Mitochondria – the suicide organelles, Bioessays 23, 111–115.

    Article  PubMed  CAS  Google Scholar 

  29. Ravagnan, L., Roumier, T., and Kroemer, G. (2002) Mitochondria, the killer organelles and their weapons, J Cell Physiol 192, 131–137.

    Article  PubMed  CAS  Google Scholar 

  30. Brenner, C., and Grimm, S. (2006) The permeability transition pore complex in cancer cell death, Oncogene 25, 4744–4756.

    Article  PubMed  CAS  Google Scholar 

  31. Galluzzi, L., Vitale, I., Kepp, O., Seror, C., Hangen, E., Perfettini, J. L., Modjtahedi, N., and Kroemer, G. (2008) Methods to dissect mitochondrial membrane permeabilization in the course of apoptosis, Methods Enzymol 442, 355–374.

    Article  PubMed  Google Scholar 

  32. Galluzzi, L., Zamzami, N., de La Motte Rouge, T., Lemaire, C., Brenner, C., and Kroemer, G. (2007) Methods for the assessment of mitochondrial membrane permeabilization in apoptosis, Apoptosis 12, 803–813.

    Article  PubMed  CAS  Google Scholar 

  33. Metivier, D., Dallaporta, B., Zamzami, N., Larochette, N., Susin, S. A., Marzo, I., and Kroemer, G. (1998) Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes, Immunol Lett 61, 157–163.

    CAS  Google Scholar 

  34. Petit, P. X., Lecoeur, H., Zorn, E., Dauguet, C., Mignotte, B., and Gougeon, M. L. (1995) Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis, J Cell Biol 130, 157–167.

    Article  PubMed  CAS  Google Scholar 

  35. Zamzami, N., Marchetti, P., Castedo, M., Decaudin, D., Macho, A., Hirsch, T., Susin, S. A., Petit, P. X., Mignotte, B., and Kroemer, G. (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death, J Exp Med 182, 367–377.

    Article  PubMed  CAS  Google Scholar 

  36. Zamzami, N., Marchetti, P., Castedo, M., Zanin, C., Vayssiere, J. L., Petit, P. X., and Kroemer, G. (1995) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo, J Exp Med 181, 1661–1672.

    Article  PubMed  CAS  Google Scholar 

  37. Inoue, S., Browne, G., Melino, G., and Cohen, G. M. (2009) Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway, Cell Death Differ 16, 1053–1061.

    Article  PubMed  CAS  Google Scholar 

  38. Kroemer, G., and Martin, S. J. (2005) Caspase-independent cell death, Nat Med 11, 725–730.

    Article  PubMed  Google Scholar 

  39. Kroemer, G., and Jaattela, M. (2005) Lysosomes and autophagy in cell death control, Nat Rev Cancer 5, 886–897.

    Article  PubMed  CAS  Google Scholar 

  40. Martin, S. J., Reutelingsperger, C. P., McGahon, A. J., Rader, J. A., van Schie, R. C., LaFace, D. M., and Green, D. R. (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl, J Exp Med 182, 1545–1556.

    Article  PubMed  CAS  Google Scholar 

  41. Wu, Y., Tibrewal, N., and Birge, R. B. (2006) Phosphatidylserine recognition by phagocytes: a view to a kill, Trends Cell Biol 16, 189–197.

    Article  PubMed  CAS  Google Scholar 

  42. Naito, M., Nagashima, K., Mashima, T., and Tsuruo, T. (1997) Phosphatidylserine externalization is a downstream event of interleukin-1 beta-converting enzyme family protease activation during apoptosis, Blood 89, 2060–2066.

    PubMed  CAS  Google Scholar 

  43. Zhuang, J., and Cohen, G. M. (1998) Release of mitochondrial cytochrome c is upstream of caspase activation in chemical-induced apoptosis in human monocytic tumour cells, Toxicol Lett 102103, 121–129.

    Article  PubMed  Google Scholar 

  44. Bailey, K., Cook, H. W., and McMaster, C. R. (2005) The phospholipid scramblase PLSCR1 increases UV induced apoptosis primarily through the augmentation of the intrinsic apoptotic pathway and independent of direct phosphorylation by protein kinase C delta, Biochim Biophys Acta 1733, 199–209.

    PubMed  CAS  Google Scholar 

  45. Smrz, D., Lebduska, P., Draberova, L., Korb, J., and Draber, P. (2008) Engagement of phospholipid scramblase 1 in activated cells: implication for phosphatidylserine externalization and exocytosis, J Biol Chem 283, 10904–10918.

    Article  PubMed  CAS  Google Scholar 

  46. Balasubramanian, K., Mirnikjoo, B., and Schroit, A. J. (2007) Regulated externalization of phosphatidylserine at the cell surface: implications for apoptosis, J Biol Chem 282, 18357–18364.

    Article  PubMed  CAS  Google Scholar 

  47. Williamson, P., Christie, A., Kohlin, T., Schlegel, R. A., Comfurius, P., Harmsma, M., Zwaal, R. F., and Bevers, E. M. (2001) Phospholipid scramblase activation pathways in lymphocytes, Biochemistry 40, 8065–8072.

    Article  PubMed  CAS  Google Scholar 

  48. Vermes, I., Haanen, C., Steffens-Nakken, H., and Reutelingsperger, C. (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V, J Immunol Methods 184, 39–51.

    CAS  Google Scholar 

  49. Foster, D. A., and Toschi, A. (2009) Targeting mTOR with rapamycin: one dose does not fit all, Cell Cycle 8, 1026–1029.

    Article  PubMed  CAS  Google Scholar 

  50. Tasdemir, E., Galluzzi, L., Maiuri, M. C., Criollo, A., Vitale, I., Hangen, E., Modjtahedi, N., and Kroemer, G. (2008) Methods for assessing autophagy and autophagic cell death, Methods Mol Biol 445, 29–76.

    Article  PubMed  CAS  Google Scholar 

  51. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, EMBO J 19, 5720–5728.

    Article  PubMed  CAS  Google Scholar 

  52. Tanida, I., Ueno, T., and Kominami, E. (2004) Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes, J Biol Chem 279, 47704–47710.

    Article  PubMed  CAS  Google Scholar 

  53. Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T., and Ohsumi, Y. (2000) A ubiquitin-like system mediates protein lipidation, Nature 408, 488–492.

    Article  PubMed  CAS  Google Scholar 

  54. Nakatogawa, H., Ichimura, Y., and Ohsumi, Y. (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion, Cell 130, 165–178.

    Article  PubMed  CAS  Google Scholar 

  55. Bjorkoy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., Stenmark, H., and Johansen, T. (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death, J Cell Biol 171, 603–614.

    Article  PubMed  Google Scholar 

  56. Komatsu, M., Wang, Q. J., Holstein, G. R., Friedrich, V. L., Jr., Iwata, J., Kominami, E., Chait, B. T., Tanaka, K., and Yue, Z. (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration, Proc Natl Acad Sci USA 104, 14489–14494.

    Article  PubMed  CAS  Google Scholar 

  57. Tasdemir, E., Maiuri, M. C., Galluzzi, L., Vitale, I., Djavaheri-Mergny, M., D’Amelio, M., Criollo, A., Morselli, E., Zhu, C., Harper, F., Nannmark, U., Samara, C., Pinton, P., Vicencio, J. M., Carnuccio, R., Moll, U. M., Madeo, F., Paterlini-Brechot, P., Rizzuto, R., Szabadkai, G., Pierron, G., Blomgren, K., Tavernarakis, N., Codogno, P., Cecconi, F., and Kroemer, G. (2008) Regulation of autophagy by cytoplasmic p53, Nat Cell Biol 10, 676–687.

    Article  PubMed  CAS  Google Scholar 

  58. Vignot, S., Faivre, S., Aguirre, D., and Raymond, E. (2005) mTOR-targeted therapy of cancer with rapamycin derivatives, Ann Oncol 16, 525–537.

    Article  PubMed  CAS  Google Scholar 

  59. Schroit, A. J., and Zwaal, R. F. (1991) Transbilayer movement of phospholipids in red cell and platelet membranes, Biochim Biophys Acta 1071, 313–329.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

GK is supported by the Ligue Nationale contre le Cancer (Equipe labellisée), Agence Nationale de la Recherche, Cancéropôle Ile-de-France, Fondation pour la Recherche Médicale, Institut National du Cancer, European Commission (Active p53, Apo-Sys, RIGHT, TransDeath, ChemoRes, ApopTrain), and Fondation pour la Recherche Médicale. LG, EM, and OK are supported by Apo-Sys, the ApopTrain Marie Curie training network of the European Union, and INSERM, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Kroemer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Galluzzi, L. et al. (2012). Evaluation of Rapamycin-Induced Cell Death. In: Weichhart, T. (eds) mTOR. Methods in Molecular Biology, vol 821. Humana Press. https://doi.org/10.1007/978-1-61779-430-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-430-8_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-429-2

  • Online ISBN: 978-1-61779-430-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics