Skip to main content

Evaluation of the Nutrient-Sensing mTOR Pathway

  • Protocol
  • First Online:
mTOR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 821))

Abstract

mTOR, an evolutionarily conserved Ser/Thr protein kinase, belongs to the PI3K-related kinase family, which also includes DNA-PKcs, ATM, and ATR. Although other PI3K-related kinase family members have been shown to secure genomic integrity by sensing DNA damage and related stresses, mTOR is known to function as a nutrient and growth factor sensor. mTOR is the catalytic subunit of two distinct multiprotein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). In response to growth factor and nutrient availability, these complexes regulate a variety of cellular processes, such as cell growth, proliferation, and survival by modulating downstream effectors, such as S6K1, 4EBP1, and AKT. Therefore, evaluation of mTOR activity has been a clear readout in order to monitor the physiological status of cells in response to environmental cues. Here, we present the current techniques for the assessment of mTOR kinase activity in different experimental settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wullschleger, S., Loewith, R., and Hall, M. N. (2006) TOR signaling in growth and metabolism, Cell 124, 471–484.

    Article  PubMed  CAS  Google Scholar 

  2. Yu, L., McPhee, C. K., Zheng, L., Mardones, G. A., Rong, Y., Peng, J., Mi, N., Zhao, Y., Liu, Z., Wan, F., Hailey, D. W., Oorschot, V., Klumperman, J., Baehrecke, E. H., and Lenardo, M. J. (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR, Nature 465, 942–946.

    Google Scholar 

  3. Yip, C. K., Murata, K., Walz, T., Sabatini, D. M., and Kang, S. A. (2010) Structure of the human mTOR complex I and its implications for rapamycin inhibition, Mol Cell 38, 768–774.

    Google Scholar 

  4. Choi, J., Chen, J., Schreiber, S. L., and Clardy, J. (1996) Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP, Science 273, 239–242.

    Article  PubMed  CAS  Google Scholar 

  5. Schmelzle, T., and Hall, M. N. (2000) TOR, a central controller of cell growth, Cell 103, 253–262.

    Article  PubMed  CAS  Google Scholar 

  6. Sarbassov, D. D., Guertin, D. A., Ali, S. M., and Sabatini, D. M. (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex, Science 307, 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  7. Sabatini, D. M. (2006) mTOR and cancer: insights into a complex relationship, Nat Rev Cancer 6, 729–734.

    Article  PubMed  CAS  Google Scholar 

  8. Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D. M. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery, Cell 110, 163–175.

    Article  PubMed  CAS  Google Scholar 

  9. Sarbassov, D. D., Ali, S. M., Sengupta, S., Sheen, J. H., Hsu, P. P., Bagley, A. F., Markhard, A. L., and Sabatini, D. M. (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB, Mol Cell 22, 159–168.

    Article  PubMed  CAS  Google Scholar 

  10. Thoreen, C. C., Kang, S. A., Chang, J. W., Liu, Q., Zhang, J., Gao, Y., Reichling, L. J., Sim, T., Sabatini, D. M., and Gray, N. S. (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1, J Biol Chem 284, 8023–8032.

    Article  PubMed  CAS  Google Scholar 

  11. Feldman, M. E., Apsel, B., Uotila, A., Loewith, R., Knight, Z. A., Ruggero, D., and Shokat, K. M. (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2, PLoS Biol 7, e38.

    Article  PubMed  Google Scholar 

  12. Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L., and Sabatini, D. M. (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1, Science 320, 1496–1501.

    Article  PubMed  CAS  Google Scholar 

  13. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P., and Guan, K. L. (2008) Regulation of TORC1 by Rag GTPases in nutrient response, Nat Cell Biol 10, 935–945.

    Article  PubMed  CAS  Google Scholar 

  14. Sato, T., Nakashima, A., Guo, L., and Tamanoi, F. (2009) Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein, J Biol Chem 284, 12783–12791.

    Article  PubMed  CAS  Google Scholar 

  15. Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A. L., Nada, S., and Sabatini, D. M. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids, Cell 141, 290–303.

    Google Scholar 

  16. Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., Yang, H., Hild, M., Kung, C., Wilson, C., Myer, V. E., MacKeigan, J. P., Porter, J. A., Wang, Y. K., Cantley, L. C., Finan, P. M., and Murphy, L. O. (2009) Bidirectional transport of amino acids regulates mTOR and autophagy, Cell 136, 521–534.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr Sei Yoshida for technical information on mTOR immunostaining. This work was supported by a grant from NIH (DK DK083491).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Inoki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hong, S., Mannan, A.M., Inoki, K. (2012). Evaluation of the Nutrient-Sensing mTOR Pathway. In: Weichhart, T. (eds) mTOR. Methods in Molecular Biology, vol 821. Humana Press. https://doi.org/10.1007/978-1-61779-430-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-430-8_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-429-2

  • Online ISBN: 978-1-61779-430-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics