Abstract
The mammalian (or mechanistic) target of rapamycin (mTOR) is an evolutionarily conserved serine-threonine kinase that is known to sense the environmental and cellular nutrition and energy status. Diverse mitogens, growth factors, and nutrients stimulate the activation of the two mTOR complexes mTORC1 and mTORC2 to regulate diverse functions, such as cell growth, proliferation, development, memory, longevity, angiogenesis, autophagy, and innate as well as adaptive immune responses. Dysregulation of the mTOR pathway is frequently observed in various cancers and in genetic disorders, such as tuberous sclerosis complex or cystic kidney disease. In this review, I will give an overview of the current understanding of mTOR signaling and its role in diverse tissues and cells. Genetic deletion of specific mTOR pathway proteins in distinct tissues and cells broadened our understanding of the cell-specific roles of mTORC1 and mTORC2. Inhibition of mTOR is an established therapeutic principle in transplantation medicine and in cancers, such as renal cell carcinoma. Pharmacological targeting of both mTOR complexes by novel drugs potentially expand the clinical applicability and efficacy of mTOR inhibition in various disease settings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Yang, Q., and Guan, K. L. (2007) Expanding mTOR signaling. Cell Res 17, 666–81.
Abraham, R. T., and Wiederrecht, G. J. (1996) Immunopharmacology of rapamycin. Annu Rev Immunol 14, 483–510.
Zoncu, R., Efeyan, A., and Sabatini, D. M. (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12, 21–35.
Avruch, J., Long, X., Ortiz-Vega, S., Rapley, J., Papageorgiou, A., and Dai, N. (2009) Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 296, E592–602.
Donahue, A. C., and Fruman, D. A. (2007) Distinct signaling mechanisms activate the target of rapamycin in response to different B-cell stimuli. Eur J Immunol 37, 2923–36.
Cao, W., Manicassamy, S., Tang, H., Kasturi, S. P., Pirani, A., Murthy, N., et al. (2008) Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat Immunol 9, 1157–64.
Schmitz, F., Heit, A., Dreher, S., Eisenacher, K., Mages, J., Haas, T., et al. (2008) Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells. Eur J Immunol 38, 2981–92.
Weichhart, T., Costantino, G., Poglitsch, M., Rosner, M., Zeyda, M., Stuhlmeier, K. M., et al. (2008) The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29, 565–77.
Fruman, D. A. (2004) Towards an understanding of isoform specificity in phosphoinositide 3-kinase signalling in lymphocytes. Biochem Soc Trans 32, 315–9.
Guertin, D. A., and Sabatini, D. M. (2005) An expanding role for mTOR in cancer. Trends Mol Med 11, 353–61.
Brazil, D. P., Yang, Z. Z., and Hemmings, B. A. (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29, 233–42.
Deane, J. A., and Fruman, D. A. (2004) Phosphoinositide 3-kinase: diverse roles in immune cell activation. Annu Rev Immunol 22, 563–98.
Paul, E., and Thiele, E. (2008) Efficacy of sirolimus in treating tuberous sclerosis and lymphangioleiomyomatosis. N Engl J Med 358, 190–2.
Stocker, H., Radimerski, T., Schindelholz, B., Wittwer, F., Belawat, P., Daram, P., et al. (2003) Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 5, 559–65.
Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P., and Guan, K. L. (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10, 935–45.
Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A. L., Nada, S., and Sabatini, D. M. (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303.
Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L., et al. (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–501.
Hay, N., and Sonenberg, N. (2004) Upstream and downstream of mTOR. Genes Dev 18, 1926–45.
Kim, D. H., and Sabatini, D. M. (2004) Raptor and mTOR: subunits of a nutrient-sensitive complex. Curr Top Microbiol Immunol 279, 259–70.
Oshiro, N., Yoshino, K., Hidayat, S., Tokunaga, C., Hara, K., Eguchi, S., et al. (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9, 359–66.
Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Ruegg, M. A., Hall, A., et al. (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6, 1122–8.
Zinzalla, V., Stracka, D., Oppliger, W., and Hall, M. N. (2011) Activation of mTORC2 by Association with the Ribosome. Cell 144, 757–68.
Oh, W. J., Wu, C. C., Kim, S. J., Facchinetti, V., Julien, L. A., Finlan, M., et al. (2010) mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 29, 3939–51.
Sarbassov, D. D., Guertin, D. A., Ali, S. M., and Sabatini, D. M. (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–101.
Huang, J., Dibble, C. C., Matsuzaki, M., and Manning, B. D. (2008) The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 28, 4104–15.
Sarbassov dos, D., Ali, S. M., Sengupta, S., Sheen, J. H., Hsu, P. P., Bagley, A. F., et al. (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22, 159–68.
Rosner, M., Hanneder, M., Siegel, N., Valli, A., and Hengstschlager, M. (2008) The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutat Res 658, 234–46.
Rosner, M., and Hengstschlager, M. (2008) Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalisation of the mTORC2 components rictor and sin1. Hum Mol Genet 17, 2934–48.
Dowling, R. J., Topisirovic, I., Alain, T., Bidinosti, M., Fonseca, B. D., Petroulakis, E., et al. (2010) mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328, 1172–6.
Morice, W. G., Brunn, G. J., Wiederrecht, G., Siekierka, J. J., and Abraham, R. T. (1993) Rapamycin-induced inhibition of p34cdc2 kinase activation is associated with G1/S-phase growth arrest in T lymphocytes. J Biol Chem 268, 3734–8.
Nourse, J., Firpo, E., Flanagan, W. M., Coats, S., Polyak, K., Lee, M. H., et al. (1994) Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 372, 570–3.
Hong, F., Larrea, M. D., Doughty, C., Kwiatkowski, D. J., Squillace, R., and Slingerland, J. M. (2008) mTOR-raptor binds and activates SGK1 to regulate p27 phosphorylation. Mol Cell 30, 701–11.
Rosner, M., Freilinger, A., Hanneder, M., Fujita, N., Lubec, G., Tsuruo, T., et al. (2007) p27Kip1 localization depends on the tumor suppressor protein tuberin. Hum Mol Genet 16, 1541–56.
Noda, T., and Ohsumi, Y. (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273, 3963–6.
Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., et al. (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20, 1992–2003.
Gangloff, Y. G., Mueller, M., Dann, S. G., Svoboda, P., Sticker, M., Spetz, J. F., et al. (2004) Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 24, 9508–16.
Shor, B., Cavender, D., and Harris, C. (2009) A kinase-dead knock-in mutation in mTOR leads to early embryonic lethality and is dispensable for the immune system in heterozygous mice. BMC Immunol 10, 28.
Goorden, S. M., Hoogeveen-Westerveld, M., Cheng, C., van Woerden, G. M., Mozaffari, M., Post, L., et al. (2011) Rheb is essential for murine development. Mol Cell Biol 31, 1672–8.
Zou, J., Zhou, L., Du, X. X., Ji, Y., Xu, J., Tian, J., et al. (2011) Rheb1 is required for mTORC1 and myelination in postnatal brain development. Dev Cell 20, 97–108.
Haidinger, M., Hecking, M., Weichhart, T., Poglitsch, M., Enkner, W., Vonbank, K., et al. (2010) Sirolimus in renal transplant recipients with tuberous sclerosis complex: clinical effectiveness and implications for innate immunity. Transpl Int 23, 777–85.
Nie, D., Di Nardo, A., Han, J. M., Baharanyi, H., Kramvis, I., Huynh, T., et al. (2010) Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci 13, 163–72.
Abe, N., Borson, S. H., Gambello, M. J., Wang, F., and Cavalli, V. (2010) Mammalian target of rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves. J Biol Chem 285, 28034–43.
Park, K. K., Liu, K., Hu, Y., Smith, P. D., Wang, C., Cai, B., et al. (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322, 963–6.
Li, D., Zhou, J., Wang, L., Shin, M. E., Su, P., Lei, X., et al. (2010) Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J Cell Biol 191, 631–44.
Zhou, J., Su, P., Wang, L., Chen, J., Zimmermann, M., Genbacev, O., et al. (2009) mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci USA 106, 7840–5.
Lee, K. W., Yook, J. Y., Son, M. Y., Kim, M. J., Koo, D. B., Han, Y. M., et al. (2010) Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway. Stem Cells Dev 19, 557–68.
Siegel, N., Rosner, M., Unbekandt, M., Fuchs, C., Slabina, N., Dolznig, H., et al. (2010) Contribution of human amniotic fluid stem cells to renal tissue formation depends on mTOR. Hum Mol Genet 19, 3320–31.
Easley. C.A.t., Ben-Yehudah. A., Redinger. C.J., Oliver. S.L., Varum. S.T., Eisinger. V.M., et al., (2010). mTOR-mediated activation of p70 S6K induces differentiation of pluripotent human embryonic stem cells. Cell Reprogram. 12, 263–73.
Yilmaz, O. H., Valdez, R., Theisen, B. K., Guo, W., Ferguson, D. O., Wu, H., et al. (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–82.
Hobbs, R. M., Seandel, M., Falciatori, I., Rafii, S., and Pandolfi, P. P. (2010) Plzf regulates germline progenitor self-renewal by opposing mTORC1. Cell 142, 468–79.
Leibowitz, G., Cerasi, E., and Ketzinel-Gilad, M. (2008) The role of mTOR in the adaptation and failure of beta-cells in type 2 diabetes. Diabetes Obes Metab 10 Suppl 4, 157–69.
Mori, H., Inoki, K., Opland, D., Muenzberg, H., Villanueva, E. C., Faouzi, M., et al. (2009) Critical roles for the TSC-mTOR pathway in {beta}-cell function. Am J Physiol Endocrinol Metab 297, 1013–22.
Janeway, C. A., Jr. (2001) How the immune system works to protect the host from infection: a personal view. Proc Natl Acad Sci USA 98, 7461–8.
Saemann, M. D., Haidinger, M., Hecking, M., Horl, W. H., and Weichhart, T. (2009) The multifunctional role of mTOR in innate immunity: implications for transplant immunity. Am J Transplant 9, 2655–61.
Weichhart, T., and Saemann, M. D. (2009) The multiple facets of mTOR in immunity. Trends Immunol 30, 218–26.
Yang, C. S., Song, C. H., Lee, J. S., Jung, S. B., Oh, J. H., Park, J., et al. (2006) Intracellular network of phosphatidylinositol 3-kinase, mammalian target of the rapamycin/70 kDa ribosomal S6 kinase 1, and mitogen-activated protein kinases pathways for regulating mycobacteria-induced IL-23 expression in human macrophages. Cell Microbiol 8, 1158–71.
Ohtani, M., Nagai, S., Kondo, S., Mizuno, S., Nakamura, K., Tanabe, M., et al. (2008) Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood 112, 635–43.
Brouard, S., Puig-Pey, I., Lozano, J. J., Pallier, A., Braud, C., Giral, M., et al. (2010) Comparative Transcriptional and Phenotypic Peripheral Blood Analysis of Kidney Recipients under Cyclosporin A or Sirolimus Monotherapy. Am J Transplant 10, 2604–14.
Haidinger, M., Poglitsch, M., Geyeregger, R., Kasturi, S., Zeyda, M., Zlabinger, G. J., et al. (2010) A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation. J Immunol 185, 3919–31.
Weichhart, T., Haidinger, M., Katholnig, M., Kopecky, C., Poglitsch, M., Lassnig, C., et al. (2011) Inhibition of mTOR blocks the anti-inflammatory effects of glucocorticoids in myeloid immune cells. Blood 117, 4273–83.
Yoshida, T., Mett, I., Bhunia, A. K., Bowman, J., Perez, M., Zhang, L., et al. (2010) Rtp801, a suppressor of mTOR signaling, is an essential mediator of cigarette smoke-induced pulmonary injury and emphysema. Nat Med 16, 767–73.
Jagannath, C., Lindsey, D. R., Dhandayuthapani, S., Xu, Y., Hunter, R. L., Jr., and Eissa, N. T. (2009) Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 15, 267–76.
Colonna, M., Trinchieri, G., and Liu, Y. J. (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5, 1219–26.
Kaur, S., Lal, L., Sassano, A., Majchrzak-Kita, B., Srikanth, M., Baker, D. P., et al. (2007) Regulatory effects of mammalian target of rapamycin-activated pathways in type I and II interferon signaling. J Biol Chem 282, 1757–68.
Colina, R., Costa-Mattioli, M., Dowling, R. J., Jaramillo, M., Tai, L. H., Breitbach, C. J., et al. (2008) Translational control of the innate immune response through IRF-7. Nature 452, 323–8.
Zhu, J., Yamane, H., and Paul, W. E. (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28, 445–89.
Delgoffe, G. M., Kole, T. P., Zheng, Y., Zarek, P. E., Matthews, K. L., Xiao, B., et al. (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–44.
Battaglia, M., Stabilini, A., and Roncarolo, M. G. (2005) Rapamycin selectively expands CD4  +  CD25  +  FoxP3+ regulatory T cells. Blood 105, 4743–8.
Lee, K., Gudapati, P., Dragovic, S., Spencer, C., Joyce, S., Killeen, N., et al. (2010) Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32, 743–53.
Weichhart, T., and Saemann, M. D. (2010) T helper cell differentiation: understanding the needs of hierarchy. Immunity 32, 727–9.
Sinclair, L. V., Finlay, D., Feijoo, C., Cornish, G. H., Gray, A., Ager, A., et al. (2008) Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat Immunol 9, 513–21.
Araki, K., Turner, A. P., Shaffer, V. O., Gangappa, S., Keller, S. A., Bachmann, M. F., et al. (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–12.
Pearce, E. L., Walsh, M. C., Cejas, P. J., Harms, G. M., Shen, H., Wang, L. S., et al. (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–7.
Hands, S. L., Proud, C. G., and Wyttenbach, A. (2009) mTOR’s role in ageing: protein synthesis or autophagy? Aging (Albany NY) 1, 586–97.
Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., et al. (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–5.
Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., et al. (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–4.
Selman, C., Tullet, J. M., Wieser, D., Irvine, E., Lingard, S. J., Choudhury, A. I., et al. (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140–4.
Miller, J. L. (1999) Sirolimus approved with renal transplant indication. Am J Health Syst Pharm 56, 2177–8.
Moses, J. W., Leon, M. B., Popma, J. J., Fitzgerald, P. J., Holmes, D. R., O’Shaughnessy, C., et al. (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349, 1315–23.
Faivre, S., Kroemer, G., and Raymond, E. (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5, 671–88.
Bissler, J. J., McCormack, F. X., Young, L. R., Elwing, J. M., Chuck, G., Leonard, J. M., et al. (2008) Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358, 140–51.
Thoreen, C. C., Kang, S. A., Chang, J. W., Liu, Q., Zhang, J., Gao, Y., et al. (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284, 8023–32.
Thoreen, C. C., and Sabatini, D. M. (2009) Rapamycin inhibits mTORC1, but not completely. Autophagy 5, 725–6.
Yu, K., Shi, C., Toral-Barza, L., Lucas, J., Shor, B., Kim, J. E., et al. (2010) Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res 70, 621–31.
Yu, K., Toral-Barza, L., Shi, C., Zhang, W. G., Lucas, J., Shor, B., et al. (2009) Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 69, 6232–40.
Chresta, C. M., Davies, B. R., Hickson, I., Harding, T., Cosulich, S., Critchlow, S. E., et al. (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 70, 288–98.
Janes, M. R., and Fruman, D. A. (2010) Targeting TOR dependence in cancer. Oncotarget 1, 69–76.
Janes, M. R., Limon, J. J., So, L., Chen, J., Lim, R. J., Chavez, M. A., et al. (2010) Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 16, 205–13.
Acknowledgments
TW is supported by the Else-Kröner Fresenius Stiftung. I apologize to those authors whose primary work I did not reference directly in the text.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer Science+Business Media, LLC
About this protocol
Cite this protocol
Weichhart, T. (2012). Mammalian Target of Rapamycin: A Signaling Kinase for Every Aspect of Cellular Life. In: Weichhart, T. (eds) mTOR. Methods in Molecular Biology, vol 821. Humana Press. https://doi.org/10.1007/978-1-61779-430-8_1
Download citation
DOI: https://doi.org/10.1007/978-1-61779-430-8_1
Published:
Publisher Name: Humana Press
Print ISBN: 978-1-61779-429-2
Online ISBN: 978-1-61779-430-8
eBook Packages: Springer Protocols