Advertisement

Polycistronic Expression of Interfering RNAs from RNA Polymerase III Promoters

  • Laura F. Steel
  • Viraj R. Sanghvi
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 815)

Abstract

In many RNA silencing applications, there is a benefit to expressing multiple interfering RNAs simultaneously. This can be achieved by using a single RNA polymerase II promoter to express multiple micro(mi)RNA-formatted interfering RNAs that are arranged in a polycistronic cluster, mimicking the organization of naturally clustered, endogenous miRNAs. While RNA pol III promoters are often used to express individual short hairpin (sh) RNAs, we have recently shown that pol III promoters can also be used to drive polycistronic expression of miRNA-formatted interfering RNAs. Here, we present methods for the assembly of polycistronic miRNA expression vectors that use pol III promoters. In addition, we present methods for testing the potency and the level of expression of each of the individual miRNAs encoded in the construct.

Key words

miRNA expression vectors RNA pol III promoters RNA silencing Polycistronic miRNA Dual luciferase reporter plasmid miRNA northern blot 

References

  1. 1.
    Grimm, D., and Kay, M. A. (2007) Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 15, 878–888.PubMedGoogle Scholar
  2. 2.
    Snyder, L. L., Esser, J. M., Pachuk, C. J., and Steel, L. F. (2008) Vector design for liver specific expression of multiple interfering RNAs that target hepatitiis B virus transcripts, Anitviral Research 80, 36–44.CrossRefGoogle Scholar
  3. 3.
    Snyder, L. L., Ahmed, I., and Steel, L. F. (2009) RNA polymerase III can drive polycistronic expression of functional interfering RNAs designed to resemble microRNAs, Nucleic Acids Res 37, e127.PubMedCrossRefGoogle Scholar
  4. 4.
    Cai, X., Hagedorn, C. H., and Cullen, B. R. (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs, RNA 10, 1957–1966.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., and Kim, V. N. (2004) MicroRNA genes are transcribed by RNA polymerase II, EMBO J 23, 4051–4060.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim, V. N., Han, J., and Siomi, M. C. (2009) Biogenesis of small RNAs in animals, Nat Rev Mol Cell Biol 10, 126–139.PubMedCrossRefGoogle Scholar
  7. 7.
    Boden, D., Pusch, O., Silbermann, R., Lee, F., Tucker, L., and Ramratnam, B. (2004) Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins, Nucl. Acids Res. 32, 1154–1158.PubMedCrossRefGoogle Scholar
  8. 8.
    McManus, M. T., Petersen, C. P., Haines, B.B., Chen, J., and Sharp, P. (2002) Gene silencing using micro-RNA designed hairpins, RNA 8, 842–850.Google Scholar
  9. 9.
    Zeng, Y., Wagner, E. J., and Cullen, B. R. (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells, Molecular Cell 9, 1327–1333.PubMedCrossRefGoogle Scholar
  10. 10.
    Bos, T. J., De Bruyne, E., Heirman, C., and Vanderkerken, K. (2009) In search of the most suitable lentiviral shRNA system, Curr Gene Ther 9, 192–211.PubMedCrossRefGoogle Scholar
  11. 11.
    Chung, K.-H., Hart, C. C., Al-Bassam, S., Avery, A., Taylor, J., Patel, P. D., Vojtek, A. B., and Turner, D. L. (2006) Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155, Nucleic Acids Research 34, e53.PubMedCrossRefGoogle Scholar
  12. 12.
    Du, G., Yonekubo, J., Zeng, Y., Osisami, M., and Frohman, M. A. (2006) Design of expression vectors for RNA interference based on miRNAs and RNA splicing, FEBS J 273, 5421–5427.PubMedCrossRefGoogle Scholar
  13. 13.
    Son, J., Uchil, P. D., Kim, Y. B., Shankar, P., Kumar, P., and Lee, S.-K. (2008) Effective suppression of HIV-1 by artificial bispecific miRNA targeting conserved sequences with tolerance for wobble base-pairing, Biochem Biophy Res Commun 374, 214–218.CrossRefGoogle Scholar
  14. 14.
    Silva, J. M., Li, M. Z., Chang, K., Ge, W., Golding, M. C., Rickles, R. J., Siolas, D., Hu, G., Paddison, P. J., Schlabach, M. R., Sheth, N., Bradshaw, J., Burchard, J., Kulkarni, A., Cavet, G., Sachidanandam, R., McCombie, W. R., Cleary, M. A., Elledge, S. J., and Hannon, G. J. (2005) Second-generation shRNA libraries covering the mouse and human genomes, Nat Genet 37, 1281–1288.PubMedGoogle Scholar
  15. 15.
    Zeng, Y., and Cullen, B. R. (2003) Sequence requirements for micro RNA processing and function in human cells, RNA 9, 112–123.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu, Y. P., Haasnoot, J., Ter Brake, O., Berkhout, B., and Konstantinova, P. (2008) Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron, Nucleic Acids Res 36, 2811–2824.PubMedCrossRefGoogle Scholar
  17. 17.
    Aagaard, L. A., Zhang, J., von Eije, K. J., Li, H., Saetrom, P., Amarzguioui, M., and Rossi, J. J. (2008) Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs, Gene Ther 15, 1536–1549.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations