Advertisement

Using Cell and Organ Culture Models to Analyze Responses of Bone Cells to Mechanical Stimulation

  • Andrew A. Pitsillides
  • Simon C. F. Rawlinson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 816)

Abstract

Bone cells of the osteoblastic lineage are responsive to the local mechanical environment. Through integration of a number of possible loading-induced regulatory stimuli, osteocyte, osteoblast, and osteoclast behaviour is organized to fashion a skeletal element of sufficient strength and toughness to resist fracture and crack propagation. Early pre-osteogenic responses had been determined in vivo and this led to the development of bone organ culture models to elucidate other pre-osteogenic responses where osteocytes and osteoblasts retain the natural orientation, connections and attachments to their native extracellular matrix. The application of physiological mechanical loads to bone in these organ culture models generates the regulatory stimuli. As a consequence, these experiments can be used to illustrate the distinctive mechanisms by which osteocytes and osteoblasts respond to mechanical loads and also differences in these responses, suggesting co-ordinated and cooperatively between cell populations. Organ explant cultures are awkward to maintain, and have a limited life, but length of culture times are improving. Monolayer cultures are much easier to maintain and permit the application of a particular mechanical stimulation to be studied in isolation; mainly direct mechanical strain or fluid shear strains. These allow for the response of a single cell type to the applied mechanical stimulation to be monitored precisely.

The techniques that can be used to apply mechanical strain to bone and bone cells have not advanced greatly since the first edition. The output from such experiments has, however, increased substantially and their importance is now more broadly accepted. This suggests a growing use of these approaches and an increasing awareness of the importance of the mechanical environment in controlling normal bone cell behaviour. We expand the text to include additions and modifications made to the straining apparatus and update the research cited to support this growing role of cell and organ culture models to analyze responses of bone cells to mechanical stimulation.

Key words

Bone Mechanical load Mechanical strain Fluid shear 

Notes

Acknowledgements

We are grateful to Arthritis Research UK, the Biotechnology and Biological Sciences Research Council, and The Wellcome Trust for their contribution to the work done in the laboratories of AAP. We would also like to thank Dr. Gul Zaman for his constructive and critical comments and Victoria Das-Gupta and Dominic Simon for their contributions to the original edition. We are also grateful to Prof. Lance Lanyon.

References

  1. 1.
    Bradbeer, J. N. (1992) Cell biology of bone remodelling. In Recent Advances in Endrocrinology and Metabolism (Edwards, C. R. E., and Lincoln, D. W., eds) Chruchill Livingstone, PP. 95–113.Google Scholar
  2. 2.
    Bonassar, L. J., Grodzinsky, A. J., Srinivasan, A., Davila, S. G., and Trippel, S. B. (2000) Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage. Arch. Biochem. Biophys. 379, 57–63.PubMedCrossRefGoogle Scholar
  3. 3.
    Bayliss, M. T., Howat, S., Davidson, C., and Dudhia, J. (2000) The organization of aggrecan in human articular cartilage. Evidence for age-related changes in the rate of aggregation of newly synthesized molecules. J. Biol. Chem. 275, 6321–6327.Google Scholar
  4. 4.
    Packer, D. L., Dombi, G. W., Yu, P. Y., Zidel, P., and Sullivan, W. G. (1994) An in vitro model of fibroblast activity and adhesion formation during flexor tendon healing. J. Hand Surg. Am. 19, 769–776.PubMedCrossRefGoogle Scholar
  5. 5.
    Zaman, G., Pitsillides, A. A., Rawlinson, S. C. F., Suswillo, R. F., Mosley, J. R., Cheng, M. Z., Platts, L. A., Hukkanen, M., Polak, J. M., and Lanyon, L. E. (1999) Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J. Bone Miner. Res. 14, 1123–1131.PubMedCrossRefGoogle Scholar
  6. 6.
    Rawlinson, S. C. F., Mosley, J. R., Suswillo, R. F., Pitsillides, A. A., and Lanyon, L. E. (1995) Calvarial and limb bone cells in organ and monolayer culture do not show the same early responses to dynamic mechanical strain. J. Bone Miner. Res. 10, 1225–1232.PubMedCrossRefGoogle Scholar
  7. 7.
    Currey, J. D. (1979) Mechanical properties of bone tissues with greatly differing functions. J. Biomech. 12, 313–319.PubMedCrossRefGoogle Scholar
  8. 8.
    Riggs, C. M., Lanyon, L. E., and Boyde, A. (1993) Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius. Anat. Embryol. (Berl) 187, 231–238.Google Scholar
  9. 9.
    Rubin, C. T., and Lanyon, L. E. (1984) Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. Am. 66, 397–402.PubMedGoogle Scholar
  10. 10.
    Turner, C. H., Akhter, M. P., Raab, D. M., Kimmel, D. B., and Recker, R. R. (1991) A noninvasive, in vivo model for studying strain adaptive bone modeling. Bone 12, 73–79.PubMedCrossRefGoogle Scholar
  11. 11.
    Mosley, J. R., March, B. M., Lynch, J., and Lanyon, L. E. (1997) Strain magnitude related changes in whole bone architecture in growing rats. Bone 20, 191–198.PubMedCrossRefGoogle Scholar
  12. 12.
    Cheng, M. Z., Zaman, G., and Lanyon, L. E. (1994) Estrogen enhances the stimulation of bone collagen synthesis by loading and exogenous prostacyclin, but not prostaglandin E2, in organ cultures of rat ulnae. J. Bone Miner. Res. 9, 805–816.PubMedCrossRefGoogle Scholar
  13. 13.
    Reich, K. M., and Frangos, J. A. (1993) Protein kinase C mediates flow-induced prostaglandin E2 production in osteoblasts. Calcif. Tissue Int. 52, 62–66.PubMedCrossRefGoogle Scholar
  14. 14.
    Reich, K. M., Gay, C. V., and Frangos, J. A. (1990) Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell. Physiol. 143, 100–104.PubMedCrossRefGoogle Scholar
  15. 15.
    MacGinitie, L. A., Wu, D. D., and Cochran, G. V. (1993) Streaming potentials in healing, remodeling, and intact cortical bone. J. Bone Miner. Res. 8, 1323–1335.PubMedCrossRefGoogle Scholar
  16. 16.
    Ruoslahti, E., and Pierschbacher, M. D. (1987) New perspectives in cell adhesion: RGD and integrins. Science 238, 491–497.PubMedCrossRefGoogle Scholar
  17. 17.
    Oldberg, A., Franzen, A., and Heinegard, D. (1988) The primary structure of a cell-binding bone sialoprotein. J. Biol. Chem. 263, 19430–19432.PubMedGoogle Scholar
  18. 18.
    Oldberg, A., Franzen, A., and Heinegard, D. (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc. Natl. Acad. Sci. USA 83, 8819–8823.PubMedCrossRefGoogle Scholar
  19. 19.
    Zimmerman, D., Jin, F., Leboy, P., Hardy, S., and Damsky, C. (2000) Impaired Bone Formation in Transgenic Mice Resulting from Altered Integrin Function in Osteoblasts. Dev. Biol. 220, 2–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Gronthos, S., Stewart, K., Graves, S. E., Hay, S., and Simmons, P. J. (1997) Integrin expression and function on human osteoblast-like cells. J. Bone Miner. Res. 12, 1189–1197.PubMedCrossRefGoogle Scholar
  21. 21.
    Cowles, E. A., Brailey, L. L., and Gronowicz, G. A. (2000) Integrin-mediated signaling regulates AP-1 transcription factors and proliferation in osteoblasts. J. Biomed. Mater. Res. 52, 725–737.PubMedCrossRefGoogle Scholar
  22. 22.
    Flores, M. E., Heinegard, D., Reinholt, F. P., and Andersson, G. (1996) Bone sialoprotein coated on glass and plastic surfaces is recognized by different beta 3 integrins. Exp. Cell Res. 227, 40–46.PubMedCrossRefGoogle Scholar
  23. 23.
    Collin-Osdoby, P., Nickols, G. A., and Osdoby, P. (1995) Bone cell function, regulation, and communication: a role for nitric oxide. J. Cell. Biochem. 57, 399–408.PubMedCrossRefGoogle Scholar
  24. 24.
    Doty, S. B. (1981) Morphological evidence of gap junctions between bone cells. Calcif. Tissue Int. 33, 509–512.PubMedCrossRefGoogle Scholar
  25. 25.
    Schiller, P. C., D’Ippolito, G., Balkan, W., Roos, B. A., and Howard, G. A. (2001) Gap-junctional communication is required for the maturation process of osteoblastic cells in culture. Bone 28, 362–369.PubMedCrossRefGoogle Scholar
  26. 26.
    Aarden, E. M., Nijweide, P. J., van der Plas, A., Alblas, M. J., Mackie, E. J., Horton, M. A., and Helfrich, M. H. (1996) Adhesive properties of isolated chick osteocytes in vitro. Bone 18, 305–313.PubMedCrossRefGoogle Scholar
  27. 27.
    Paic, F., Igwe, J. C., Nori, R., Kronenberg, M. S., Franceschetti, T., Harrington, P., Kuo, L., Shin, D.-G., Rowe, D. W., Harris, S. E., and Kalajzic, I. (2009) Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 45, 682–692.PubMedCrossRefGoogle Scholar
  28. 28.
    Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E. (2006) Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689.PubMedCrossRefGoogle Scholar
  29. 29.
    Sztefek, P., Vanleene, M., Olsson, R., Collinson, R., Pitsillides, A. A., and Shefelbine, S. Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia. J. Biomech. 43, 599–605.Google Scholar
  30. 30.
    Fritton, S. P., and Weinbaum, S. (2009) Fluid and solute transport in bone: Flow-induced mechanotransduction. Annu. Rev. Fluid Mech. 41, 347–374.PubMedCrossRefGoogle Scholar
  31. 31.
    Garcia-Cardena, G., Fan, R., Shah, V., Sorrentino, R., Cirino, G., Papapetropoulos, A., and Sessa, W. C. (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392, 821–824.PubMedCrossRefGoogle Scholar
  32. 32.
    Das, P., Schurman, D. J., and Smith, R. L. (1997) Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear. J. Orthop. Res. 15, 87–93.PubMedCrossRefGoogle Scholar
  33. 33.
    Rinn, J. L., Bondre, C., Gladstone, H. B., Brown, P. O., and Chang, H. Y. (2006) Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2, e119.PubMedCrossRefGoogle Scholar
  34. 34.
    Everts, V., de Vries, T. J., and Helfrich, M. H. (2009) Osteoclast heterogeneity: Lessons from osteopetrosis and inflammatory conditions. Biochim. Biophys. Acta 1792, 757–765.PubMedCrossRefGoogle Scholar
  35. 35.
    Rawlinson, S. C. F., McKay, I. J., Ghuman, M., Wellmann, C., Ryan, P., Prajaneh, S., Zaman, G., Hughes, F. J., and Kingsmill, V. J. (2009) Adult Rat Bones Maintain Distinct Regionalized Expression of Markers Associated with Their Development. PLoS ONE 4, e8358.PubMedCrossRefGoogle Scholar
  36. 36.
    Jessop, H. L., Rawlinson, S. C., Pitsillides, A. A., and Lanyon, L. E. (2002) Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone 31, 186–194.PubMedCrossRefGoogle Scholar
  37. 37.
    Binderman, I., Shimshoni, Z., and Somjen, D. (1984) Biochemical pathways involved in the translation of physical stimulus into biological message. Calcif. Tissue Int. 36 Suppl 1, S82–85.Google Scholar
  38. 38.
    Hasegawa, S., Sato, S., Saito, S., Suzuki, Y., and Brunette, D. M. (1985) Mechanical stretching increases the number of cultured bone cells synthesizing DNA and alters their pattern of protein synthesis. Calcif. Tissue Int. 37, 431–436.PubMedCrossRefGoogle Scholar
  39. 39.
    Basdra, E. K., Kohl, A., and Komposch, G. (1996) Mechanical stretching of periodontal ligament fibroblasts--a study on cytoskeletal involvement. J. Orofac. Orthop. 57, 24–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Vandenburgh, H. H. (1988) A computerized mechanical cell stimulator for tissue culture: effects on skeletal muscle organogenesis. In Vitro Cell. Dev. Biol. 24, 609–619.PubMedCrossRefGoogle Scholar
  41. 41.
    Soma, S., Matsumoto, S., and Takano-Yamamoto, T. (1997) Enhancement by conditioned medium of stretched calvarial bone cells of the osteoclast-like cell formation induced by parathyroid hormone in mouse bone marrow cultures. Arch. Oral Biol. 42, 205–211.PubMedCrossRefGoogle Scholar
  42. 42.
    Andersen, K. L., and Norton, L. A. (1991) A device for the application of known simulated orthodontic forces to human cells in vitro. J. Biomech. 24, 649–654.PubMedCrossRefGoogle Scholar
  43. 43.
    Matsuo, T., Uchida, H., and Matsuo, N. (1996) Bovine and porcine trabecular cells produce prostaglandin F2 alpha in response to cyclic mechanical stretching. Jpn. J. Ophthalmol. 40, 289–296.PubMedGoogle Scholar
  44. 44.
    Banes, A. J., Gilbert, J., Taylor, D., and Monbureau, O. (1985) A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. J. Cell Sci. 75, 35–42.PubMedGoogle Scholar
  45. 45.
    Winston, F. K., Macarak, E. J., Gorfien, S. F., and Thibault, L. E. (1989) A system to reproduce and quantify the biomechanical environment of the cell. J. Appl. Physiol. 67, 397–405.PubMedGoogle Scholar
  46. 46.
    Jones, D. B., Leivseth, G., Sawada, Y., Van der Sloten, J., and Bingmann, D. (1994) Application of homogenous, defined strains to cell cultures. In Biomechanics and Cells (Lyall, R., and el-Haj, A. J., eds) Cambridge University Press, Cambridge, PP. 197–219.Google Scholar
  47. 47.
    Nieponice, A., Maul, T. M., Cumer, J. M., Soletti, L., and Vorp, D. A. (2007) Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J. Biomed. Mater. Res. A 81, 523–530.PubMedGoogle Scholar
  48. 48.
    Granet, C., Boutahar, N., Vico, L., Alexandre, C., and Lafage-Proust, M. H. (2001) MAPK and SRC-kinases control EGR-1 and NF-kappa B inductions by changes in mechanical environment in osteoblasts. Biochem. Biophys. Res. Commun. 284, 622–631.PubMedCrossRefGoogle Scholar
  49. 49.
    Granet, C., Vico, A. G., Alexandre, C., and Lafage-Proust, M. H. (2002) MAP and src kinases control the induction of AP-1 members in response to changes in mechanical environment in osteoblastic cells. Cell Signal 14, 679–688.PubMedCrossRefGoogle Scholar
  50. 50.
    Bhatt, K. A., Chang, E. I., Warren, S. M., Lin, S. E., Bastidas, N., Ghali, S., Thibboneir, A., Capla, J. M., McCarthy, J. G., and Gurtner, G. C. (2007) Uniaxial mechanical strain: an in vitro correlate to distraction osteogenesis. J. Surg. Res. 143, 329–336.PubMedCrossRefGoogle Scholar
  51. 51.
    Colombo, A., Cahill, P. A., and Lally, C. (2008) An analysis of the strain field in biaxial Flexcell membranes for different waveforms and ­frequencies. Proc. Inst. Mech. Eng. H 222, 1235–1245.PubMedCrossRefGoogle Scholar
  52. 52.
    Brighton, C. T., Strafford, B., Gross, S. B., Leatherwood, D. F., Williams, J. L., and Pollack, S. R. (1991) The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain. J. Bone Joint Surg. Am. 73, 320–331.PubMedGoogle Scholar
  53. 53.
    Fermor, B., Gundle, R., Evans, M., Emerton, M., Pocock, A., and Murray, D. (1998) Primary human osteoblast proliferation and prostaglandin E2 release in response to mechanical strain in vitro. Bone 22, 637–643.PubMedCrossRefGoogle Scholar
  54. 54.
    Murray, D. W., and Rushton, N. (1990) The effect of strain on bone cell prostaglandin E2 release: a new experimental method. Calcif. Tissue Int. 47, 35–39.PubMedCrossRefGoogle Scholar
  55. 55.
    Grabner, B., Varga, F., Glantschnig, H., Luegmary, E., Fratzl-Zelman, N., Rumpler, M., Fratzl, P., and Klaushofer, K. (1999) A new in vitro system for applying uniaxial strain on cell cultures. Calcif. Tissue Int. 64, S114.Google Scholar
  56. 56.
    Jones, D. B., Nolte, H., Scholubbers, J. G., Turner, E., and Veltel, D. (1991) Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials 12, 101–110.PubMedCrossRefGoogle Scholar
  57. 57.
    Tanaka, S. M. (1999) A new mechanical stimulator for cultured bone cells using piezoelectric actuator. J. Biomech. 32, 427–430.PubMedCrossRefGoogle Scholar
  58. 58.
    Hughes-Fulford, M. (2001) Changes in gene expression and signal transduction in microgravity. J. Gravit. Physiol. 8, P1–4.PubMedGoogle Scholar
  59. 59.
    Committee on Space Biology and Medicine, C. o. P. S., Mathematics, and Applications, National Research Council (1998) Bone Physiology. A Strategy for Research in Space Biology and Medicine into the Next Century, 80–96.Google Scholar
  60. 60.
    Carmeliet, G., Vico, L., and Bouillon, R. (2001) Space flight: a challenge for normal bone homeostasis. Crit. Rev. Eukaryot. Gene Expr. 11, 131–144.PubMedCrossRefGoogle Scholar
  61. 61.
    Pardo, S. J., Patel, M. J., Sykes, M. C., Platt, M. O., Boyd, N. L., Sorescu, G. P., Xu, M., van Loon, J. J. W. A., Wang, M. D., and Jo, H. (2005) Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. Am. J. Physiol. Cell Physiol. 288, C1211–1221.PubMedCrossRefGoogle Scholar
  62. 62.
    Meyers, V. E., Zayzafoon, M., Gonda, S. R., Gathings, W. E., and McDonald, J. M. (2004) Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. J. Cell Biochem 93, 697–707.PubMedCrossRefGoogle Scholar
  63. 63.
    Meyers, V. E., Zayzafoon, M., Douglas, J. T., and McDonald, J. M. (2005) RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J. Bone Miner. Res. 20, 1858–1866.PubMedCrossRefGoogle Scholar
  64. 64.
    Capulli, M., Rufo, A., Teti, A., and Rucci, N. (2009) Global transcriptome analysis in mouse calvarial osteoblasts highlights sets of genes regulated by modeled microgravity and identifies a “mechanoresponsive osteoblast gene signature”. Journal of Cellular Biochemistry 107, 240–252.PubMedCrossRefGoogle Scholar
  65. 65.
    Vargas, G. E., Mesones, R. V., Bretcanu, O., Lopez, J. M., Boccaccini, A. R., and Gorustovich, A. (2009) Biocompatibility and bone mineralization potential of 45S5 Bioglass-derived glass-ceramic scaffolds in chick embryos. Acta Biomater. 5, 374–380.PubMedCrossRefGoogle Scholar
  66. 66.
    Carmagnola, D., Abati, S., Celestino, S., Chiapasco, M., Bosshardt, D., and Lang, N. P. (2008) Oral implants placed in bone defects treated with Bio-Oss, Ostim-Paste or PerioGlas: an experimental study in the rabbit tibiae. Clin. Oral Implants Res. 19, 1246–1253.PubMedCrossRefGoogle Scholar
  67. 67.
    Moura, J., Teixeira, L. N., Ravagnani, C., Peitl, O., Zanotto, E. D., Beloti, M. M., Panzeri, H., Rosa, A. L., and de Oliveira, P. T. (2007) In vitro osteogenesis on a highly bioactive glass-ceramic (Biosilicate). J. Biomed. Mater. Res. A 82, 545–557.PubMedGoogle Scholar
  68. 68.
    Varanasi, V. G., Saiz, E., Loomer, P. M., Ancheta, B., Uritani, N., Ho, S. P., Tomsia, A. P., Marshall, S. J., and Marshall, G. W. (2009) Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions. Acta Biomater. 5, 3536–3547.PubMedCrossRefGoogle Scholar
  69. 69.
    Zaman, G., Suswillo, R. F., Cheng, M. Z., Tavares, I. A., and Lanyon, L. E. (1997) Early responses to dynamic strain change and prostaglandins in bone-derived cells in culture. J. Bone Miner. Res. 12, 769–777.PubMedCrossRefGoogle Scholar
  70. 70.
    Jessop, H. L., Sjoberg, M., Cheng, M. Z., Zaman, G., Wheeler-Jones, C. P., and Lanyon, L. E. (2001) Mechanical strain and estrogen activate estrogen receptor alpha in bone cells. J. Bone Miner. Res. 16, 1045–1055.PubMedCrossRefGoogle Scholar
  71. 71.
    Lanyon, L. E., and Rubin, C. T. (1984) Static vs dynamic loads as an influence on bone remodelling. J. Biomech. 17, 897–905.PubMedCrossRefGoogle Scholar
  72. 72.
    Rubin, C. T., and Lanyon, L. E. (1985) Regulation of bone mass by mechanical strain magnitude. Calcif. Tissue Int. 37, 411–417.PubMedCrossRefGoogle Scholar
  73. 73.
    Smith, E. L., Martens, F., Koller, K., Clark, W., and Jones, D. B. (2000) The effects of 20 days of mechanical loading plus PTH on the E-modulus of cow trabecular bone. J. Bone Miner. Res. 15, S247.Google Scholar
  74. 74.
    Walker, L. M., Preston, M. R., Magnay, J. L., Thomas, P. B., and El Haj, A. J. (2001) Nicotinic regulation of c-fos and osteopontin expression in human-derived osteoblast-like cells and human trabecular bone organ culture. Bone 28, 603–608.PubMedCrossRefGoogle Scholar
  75. 75.
    Cheng, M. Z., Zaman, G., Rawlinson, S. C., Pitsillides, A. A., Suswillo, R. F., and Lanyon, L. E. (1997) Enhancement by sex hormones of the osteoregulatory effects of mechanical loading and prostaglandins in explants of rat ulnae. J. Bone Miner. Res. 12, 1424–1430.PubMedCrossRefGoogle Scholar
  76. 76.
    Cheng, M. Z., Zaman, G., Rawlinson, S. C. F., Suswillo, R. F., and Lanyon, L. E. (1996) Mechanical loading and sex hormone interactions in organ cultures of rat ulna. J. Bone Miner. Res. 11, 502–511.PubMedCrossRefGoogle Scholar
  77. 77.
    Rawlinson, S. C. F., Pitsillides, A. A., and Lanyon, L. E. (1996) Involvement of different ion channels in osteoblasts’ and osteocytes’ early responses to mechanical strain. Bone 19, 609–614.PubMedCrossRefGoogle Scholar
  78. 78.
    Rawlinson, S. C. F., Wheeler-Jones, C. P., and Lanyon, L. E. (2000) Arachidonic acid for loading induced prostacyclin and prostaglandin E(2) release from osteoblasts and osteocytes is derived from the activities of different forms of phospholipase A(2). Bone 27, 241–247.PubMedCrossRefGoogle Scholar
  79. 79.
    Pitsillides, A. A., Rawlinson, S. C. F., Mosley, J. R., and Lanyon, L. E. (1999) Bone’s early responses to mechanical loading differ in distinct genetic strains of chick: selection for enhanced growth reduces skeletal adaptability. J. Bone Miner. Res. 14, 980–987.PubMedCrossRefGoogle Scholar
  80. 80.
    Zaman, G., Dallas, S. L., and Lanyon, L. E. (1992) Cultured embryonic bone shafts show osteogenic responses to mechanical loading. Calcif. Tissue Int. 51, 132–136.PubMedCrossRefGoogle Scholar
  81. 81.
    El-Haj, A. J., Minter, S. L., Rawlinson, S. C. F., Suswillo, R., and Lanyon, L. E. (1990) Cellular responses to mechanical loading in vitro. J. Bone Miner. Res. 5, 923–932.PubMedCrossRefGoogle Scholar
  82. 82.
    Rawlinson, S. C. F., El-Haj, A. J., Minter, S. L., Tavares, I. A., Bennett, A., and Lanyon, L. E. (1991) Loading-related increases in prostaglandin production in cores of adult canine cancellous bone in vitro: a role for prostacyclin in adaptive bone remodeling? J. Bone Miner. Res. 6, 1345–1351.PubMedCrossRefGoogle Scholar
  83. 83.
    Rawlinson, S. C. F., Mohan, S., Baylink, D. J., and Lanyon, L. E. (1993) Exogenous prostacyclin, but not prostaglandin E2, produces similar responses in both G6PD activity and RNA production as mechanical loading, and increases IGF-II release, in adult cancellous bone in culture. Calcif. Tissue Int. 53, 324–329.PubMedCrossRefGoogle Scholar
  84. 84.
    Davies, C. M., Jones, D. B., Stoddart, M. J., Koller, K., Smith, E., Archer, C. W., and Richards, R. G. (2006) Mechanically loaded ex vivo bone culture system ‘Zetos’: systems and culture preparation. Eur. Cell Mater. 11, 57–75; discussion 75.Google Scholar
  85. 85.
    David, V., Guignandon, A., Martin, A., Malaval, L., Lafage-Proust, M.-H., Rattner, A., Mann, V., Noble, B., Jones, D. B., and Vico, L. (2008) Ex Vivo Bone Formation in Bovine Trabecular Bone Cultured in a Dynamic 3D Bioreactor Is Enhanced by Compressive Mechanical Strain. Tissue Engineering Part A 14, 117–126.PubMedCrossRefGoogle Scholar
  86. 86.
    Endres, S., Kratz, M., Wunsch, S., and Jones, D. B. (2009) Zetos: A culture loading system for trabecular bone. Investigation of different loading signal intensities on bovine bone cylinders. J. Musculoskelet. Neuronal Interact. 9, 173–183.Google Scholar
  87. 87.
    Chan, M., Lu, X., Huo, B., Baik, A., Chiang, V., Guldberg, R., Lu, H., and Guo, X. (2009) A Trabecular Bone Explant Model of Osteocyte-Osteoblast Co-Culture for Bone Mechanobiology. Cellular and Molecular Bioengineering 2, 405–415.PubMedCrossRefGoogle Scholar
  88. 88.
    Jones, D. B., and Scholubbers, J. G. (1987) Evidence that phospholipase C mediates the mechanical stress effect in bone. Calcif. Tissue Int. 41 Google Scholar
  89. 89.
    Pitsillides, A. A., Rawlinson, S. C. F., Suswillo, R. F., Bourrin, S., Zaman, G., and Lanyon, L. E. (1995) Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J. 9, 1614–1622.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Andrew A. Pitsillides
    • 1
  • Simon C. F. Rawlinson
    • 2
  1. 1.Department of Veterinary Basic SciencesThe Royal Veterinary CollegeLondonUK
  2. 2.Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Institute of DentistryLondonUK

Personalised recommendations