Mechanical Properties of Bone Ex Vivo

  • Simon R. Goodyear
  • Richard M. Aspden
Part of the Methods in Molecular Biology book series (MIMB, volume 816)


The primary functions of bone are to do with support and protection – mechanical functions. The aim of this chapter is to set out some of the methods that can be used to measure these properties in cortical and cancelleous bone from large (e.g. human or bovine) and small (e.g. mouse) animals. The difference between properties of the sample (intrinsic properties) and properties of the material (extrinsic properties) is introduced and techniques for measuring them suggested. The addition of other tests to give a complete characterisation of a bone sample is presented.

Key words

Mechanical testing Bone Material properties Mechanical properties 


  1. 1.
    Aspden, R. M. (1990) Constraining the lateral dimensions of uniaxially loaded materials increases the calculated strength and stiffness: application to muscle and bone. Journal of Materials Science: Materials in Medicine 1, 100–104.CrossRefGoogle Scholar
  2. 2.
    Bryce, R., Aspden, R. M., Wytch, R., and Langrana, N. A. (1995) Stiffening effects of ­cortical bone on vertebral cancellous bone in situ. Spine 20, 999–1003.PubMedCrossRefGoogle Scholar
  3. 3.
    Gibson, L. J. (1985) The mechanical behaviour of cancellous bone. Journal of Biomechanics 18, 317–328.PubMedCrossRefGoogle Scholar
  4. 4.
    Gibson, L. J., and Ashby, M. F. (1988) Cellular solids, Pergamon Press, Oxford.Google Scholar
  5. 5.
    Cowin, S.C. (2001) Bone mechanics handbook, CRC Press, Boca Raton.Google Scholar
  6. 6.
    Turner, C. H., and Burr, D. B. (2001) Experimental techniques for bone mechanics, in Bone mechanics handbook (Cowin S.C. ed.) CRC Press, Boca Raton, pp. 7-1-7-35.Google Scholar
  7. 7.
    Spatz, H. -Ch., O’Leary, E. J., and Vincent, J. F. V. (1996) Young’s moduli and shear moduli in cortical bone. Proceedings of the Royal Society B: Biological Sciences 263, 287–294.PubMedCrossRefGoogle Scholar
  8. 8.
    Li, B., and Aspden, R. M. (1997) Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. Journal of Bone and Mineral Research 12, 641–651.PubMedCrossRefGoogle Scholar
  9. 9.
    Lees, S., Heeley, J. D., and Cleary, P. F. (1979) A study of some properties of a sample of bovine cortical bone using ultrasound. Calcified Tissue International 29, 107–117.PubMedCrossRefGoogle Scholar
  10. 10.
    Mkukuma, L. D., Imrie, C. T., Skakle, J. M. S., Hukins, D. W. L., and Aspden, R. M. (2005) Thermal stability and structure of ­cancellous bone mineral from the femoral head of patients with osteoarthritis or osteoporosis. Annals of the Rheumatic Diseases 64, 222–225.PubMedCrossRefGoogle Scholar
  11. 11.
    Nazarian, A., Hermannsson, B. J., Muller, J., Zurakowski, D., and Snyder, B. D. (2009) Effects of tissue preservation on murine bone mechanical properties. Journal of Biomechanics 42, 82–86.PubMedCrossRefGoogle Scholar
  12. 12.
    van Haaren, E. H., van der Zwaard, B. C., van der Veen, A. J., Heyligers, I. C., Wuisman, P. I., and Smit, T. H. (2008) Effect of long-term preservation on the mechanical properties of cortical bone in goats. Acta Orthopaedica 79, 708–716.PubMedCrossRefGoogle Scholar
  13. 13.
    Keaveny, T. M., Guo, E., Wachtel, E. F., McMahon, T. A., and Hayes, W. C. (1994) Trabecular bone exhibits fully linear elastic behavior and yields at low strains. Journal of Biomechanics 27, 1127–1136.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Musculoskeletal Research Programme, Division of Applied Medicine, Institute of Medical SciencesUniversity of AberdeenAberdeenUK

Personalised recommendations