Skip to main content

Raman Microscopy of Bone

  • Protocol
  • First Online:
Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 816))

Abstract

Raman microscopy is a non-destructive technique requiring minimal sample preparation that can be used to measure the chemical properties of the mineral and collagen parts of bone simultaneously. Modern Raman instruments contain the necessary components and software to acquire the standard information required in most bone studies. The spatial resolution of the technique is about a micron. As it is non-destructive and small samples can be used, it forms a useful part of a bone characterisation toolbox.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banwell, C. N., and McCash, E. M. (1994) Fundamentals of Molecular Spectroscopy. 4th ed., McGraw-Hill, London; New York.

    Google Scholar 

  2. Smith, E. (2005) Modern Raman Spectroscopy: A Practical Approach. John Wiley, Chichester.

    Google Scholar 

  3. Tarnowski, C. P., Ignelzi, Jr. M.A., and Morris, M. D. (2002) Mineralization of Developing Mouse Calvaria as Revealed by Raman Microspectroscopy. J. Bone Miner. Res. 17, 1118–1126.

    Article  PubMed  Google Scholar 

  4. Callender, A. F., Finney, W. F., Morris, M. D., Sahar, N. D., Kohn, D. H., Kozloff, K. M., and Goldstein, S. A. (2005) Dynamic Mechanical Testing System for Raman Microscopy of Bone Tissue Specimens. Vib. Spectrosc. 38, 101–105.

    Article  CAS  Google Scholar 

  5. Notingher, I., Jell, G., Notingher, P. L., Bisson, I., Tsigkou, O., Polak, J. M., Stevens, M, M., and Hench, L. L. (2005) Multivariate Analysis of Raman Spectra for in Vitro Non-Invasive Studies of Living Cells. J. Mol. Struct. 744–747, 179–185.

    Google Scholar 

  6. Wang, C., Wang, Y., Huffman, N. T., Cui, C., Yao, X., Midura, S., Midura, R. J., and Gorski, J. P. (2009) Confocal Laser Raman Micro­spectroscopy of Biomineralization Foci in UMR 106 Osteoblastic Cultures Reveals Temporally Synchronized Protein Changes Preceding and Accompanying Mineral Crystal Deposition. J. Biol. Chem. 284, 7100–7113.

    Article  PubMed  CAS  Google Scholar 

  7. Penel, G., Delfosse, C., Descamps, M., and Leroy, G. (2005) Composition of Bone and Apatitic Biomaterials as Revealed by Intravital Raman Microspectroscopy. Bone. 36, 893–901.

    Article  PubMed  CAS  Google Scholar 

  8. Goodyear, S. R. (2009) Physicochemical Methods for Measuring the Properties of Bone and their Application to Mouse Models of Disease. PhD ed., University of Aberdeen, Aberdeen.

    Google Scholar 

  9. Goodyear, S. R., Gibson, I. R., Skakle, J. M., Wells, R. P., and Aspden, R. M. (2009) A Comparison of Cortical and Trabecular Bone from C57 Black 6 Mice using Raman Spectroscopy. Bone. 44, 899–907.

    Article  PubMed  Google Scholar 

  10. Akkus, O., Polyakova-Akkus, A., Adar, F., and Schaffler, M. B. (2003) Aging of Microstructural Compartments in Human Compact Bone. J. Bone Miner. Res. 18, 1012–1019.

    Article  PubMed  CAS  Google Scholar 

  11. Ager, J. W., Nalla, R. K., Breeden, K. L., and Ritchie, R. O. (2005) Deep-Ultraviolet Raman Spectroscopy Study of the Effect of Aging on Human Cortical Bone. J. Biomed. Opt. 10, 1–8.

    Article  Google Scholar 

  12. Ramasamy, J. G., and Akkus, O. (2007) Local Variations in the Micromechanical Properties of Mouse Femur: The Involvement of Collagen Fiber Orientation and Mineralization. J. Biomech. 40, 910–918.

    Article  PubMed  CAS  Google Scholar 

  13. De Carmejane, O., Morris, M. D., Davis, M. K., Stixrude, L., Tecklenburg, M., Rajachar, R. M., and Kohn, D. H. (2005) Bone Chemical Structure Response to Mechanical Stress Studied by High Pressure Raman Spectroscopy. Calcified Tissue Int. 76, 207–213.

    Article  Google Scholar 

  14. Dehring. K, A., Crane, N. J., Smukler, A. R., McHugh, J. B., Roessler, B. J., and Morris, M. D. (2006) Identifying Chemical Changes in Subchondral Bone Taken from Murine Knee Joints using Raman Spectroscopy. Appl. Spectrosc. 60, 1134–1141.

    Google Scholar 

  15. Goodyear, S. R., Gibson, I. R., Skakle, J. M. S., Wells, R. P. K., and Aspden, R. M. (2007) P49 the Mechanical, Material and Chemical Properties of Cortical Bone from nNOS Null Mice. J. Bone Miner. Res. 22, 1138.

    Google Scholar 

  16. Weber, W. H., and Merlin, R. (2000) Raman Scattering in Materials Science. Springer, Berlin: London.

    Google Scholar 

  17. Laserna, J. J. (1996) Modern Techniques in Raman Spectroscopy. Wiley, Chichester; New York.

    Google Scholar 

  18. Baranska, H. (1987) Laser Raman Spectrometry: Analytical Applications. Horwood, Chichester.

    Google Scholar 

  19. Long, D. A. (1977) Raman Spectroscopy. McGraw-Hill, New York.

    Google Scholar 

  20. Tanaka, M., and Young, R. J. (2006) Review Polarised Raman Spectroscopy for the Study of Molecular Orientation Distributions in Polymers. J. Mater. Sci. 41, 963–991.

    Article  CAS  Google Scholar 

  21. Yeni, Y. N., Yerramshetty, J., Akkus, O., Pechey, C., and Les, C. M. (2006) Effect of Fixation and Embedding on Raman Spectroscopic Analysis of Bone Tissue. Calcified Tissue Int. 78, 363–371.

    Article  CAS  Google Scholar 

  22. Cai, T. T., Zhang, D., and Ben-Amotz, D. (2001) Enhanced Chemical Classification of Raman Images using Multiresolution Wavelet Transformation. Appl. Spectrosc. 55, 1124–1130.

    Article  CAS  Google Scholar 

  23. Barclay, V. J., Bonner, R. F., and Hamilton, I. P. (1997) Application of Wavelet Transforms to Experimental Spectra: Smoothing, Denoising, and Data Set Compression. Anal. Chem. 69, 78–90.

    Article  CAS  Google Scholar 

  24. Lieber, C. A., and Mahadevan-Jansen, A. (2003) Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Appl. Spectrosc. 57, 1363–1367.

    Article  PubMed  CAS  Google Scholar 

  25. Timlin, J. A., Carden, A., and Morris, M. D. (1999) Chemical Microstructure of Cortical Bone Probed by Raman Transects. Appl. Spectrosc. 53, 1429–1435.

    Article  CAS  Google Scholar 

  26. Morris, M. D., and Finney, W. F. (2004) Recent Developments in Raman and Infrared Spectroscopy and Imaging of Bone Tissue. Spectroscopy. 18, 155–159.

    CAS  Google Scholar 

  27. Carden, A., Rajachar, R. M., Morris, M. D., and Kohn, D. H. (2003) Ultrastructural Changes Accompanying the Mechanical Deformation of Bone Tissue: A Raman Imaging Study. Calcified Tissue Int. 72, 166–175.

    Article  CAS  Google Scholar 

  28. Kazanci, M., Roschger, P., Paschalis, E. P., Klaushofer, K., and Fratzl, P. (2006) Bone Osteonal Tissues by Raman Spectral Mapping: Orientation-Composition. J. Struct. Biol. 156, 489–496.

    Article  PubMed  CAS  Google Scholar 

  29. Awonusi, A., Morris, M. D., and Tecklenburg, M. M. J. (2007) Carbonate Assignment and Calibration in the Raman Spectrum of Apatite. Calcified Tissue Int. 81, 46–52.

    Article  CAS  Google Scholar 

  30. Paschalis, E. P., Verdelis, K., Doty, S. B., Boskey, A. L., Mendelsohn, R., and Yamauchi, M. (2001) Spectroscopic Characterization of Collagen Cross-Links in Bone. J. Bone Miner. Res. 16, 1821–1828.

    Article  PubMed  CAS  Google Scholar 

  31. Wopenka, B., and Pasteris, J. D. (2005) A Mineralogical Perspective on the Apatite in Bone. Mat. Sci. Eng. C. 25, 131–143.

    Article  Google Scholar 

  32. Freeman, J. J., Wopenka, B., Silva, M. J., and Pasteris, J. D. (2001) Raman Spectroscopic Detection of Changes in Bioapatite in Mouse Femora as a Function of Age and in Vitro Fluoride Treatment. Calcified Tissue Int. 68, 156–162.

    Article  CAS  Google Scholar 

  33. Penel, G., Leroy, G., Rey, C., and Bres, E. (1998) MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites. Calcified Tissue Int. 63, 475–481.

    Article  CAS  Google Scholar 

  34. Chatfield, C., and Collins, A. J. (1989) Principal Component Analysis, in Introduction to Multivariate Analysis pp 57–81, Chapman and Hall.

    Google Scholar 

  35. Hair, J. F. (1998) Multivariate Data Analysis. Prentice Hall, Upper Saddle River, N.J.

    Google Scholar 

  36. Kirchner, M. T., Edwards, H. G. M., Lucy, D., and Pollard, A. M. (1997) Ancient and Modern Specimens of Human Teeth: A Fourier Transform Raman Spectroscopic Study. Journal of Raman Spectroscopy. 28, 171–178.

    Article  CAS  Google Scholar 

  37. Gentleman, E., Swain, R. J., Evans, N. D., Boonrungsiman, S., Jell, G., Ball, M. D., Shean, T. A. V., Oyen, M. L., Porter, A., and Stevens, M. M. (2009) Comparative Materials Differences Revealed in Engineered Bone as a Function of Cell-Specific Differentiation. Nat. Mater. 8, 763–770.

    Article  PubMed  CAS  Google Scholar 

  38. Chew, W., Widjaja, E., and Garland, M. (2002) Band-Target Entropy Minimization (BTEM): An Advanced Method for Recovering Unknown Pure Component Spectra. Application to the FTIR Spectra of Unstable Organometallic Mixtures. Organometallics. 21, 1982–1990.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon R. Goodyear .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Goodyear, S.R., Aspden, R.M. (2012). Raman Microscopy of Bone. In: Helfrich, M., Ralston, S. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 816. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-415-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-415-5_32

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-414-8

  • Online ISBN: 978-1-61779-415-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics