Advertisement

Bone Measurements by Peripheral Quantitative Computed Tomography in Rodents

  • Jürg A. Gasser
  • Johannes Willnecker
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 816)

Abstract

This chapter provides information for the use of peripheral quantitative computed tomography in small animals, including suggestions for study design, instrument setting, and data interpretation.

Key words

In vivo computed tomography Bone structure BMD Rat Mouse 

References

  1. 1.
    Guglielmi, G., Glüer C. C., Majumdar, S., Blunt, B. A., and Genant, H.K. (1995) Current methods and advances in bone densitometry, Eur. Radiol. 5, 129–139.PubMedCrossRefGoogle Scholar
  2. 2.
    Gasser. J. A. (1997) Quantitative assessment of bone mass and geometry by pQCT in rats in vivo and Site specificity of changes at different skeletal sites, J. Jpn. Soc. Bone Morphom. 7, 107–114.Google Scholar
  3. 3.
    Gasser, J. A. (1995) Assessing bone quantity by pQCT, Bone 17, S145–S154.Google Scholar
  4. 4.
    Ferretti, J. L., Capozza, R. F., and Zanchetta, J. R. (1995) Mechanical validation of a tomographic (pQCT) index for non-invasive estimation of rat femur bending strength, Bone 17, S145–S162.CrossRefGoogle Scholar
  5. 5.
    Ferretti, J. L., Capozza, R. F., and Zanchetta, J. R. (1995) Mechanical validation of a non-invasive (pQCT) index of bending strength in rat femurs, Bone 18, 97–102.CrossRefGoogle Scholar
  6. 6.
    Ferretti, J. L. (1997) Non-invasive assessment of bone architecture and biomechanical properties in animals and humans employing pQCT technology, J. Jpn. Soc. Bone Morphom. 7, 115–125.Google Scholar
  7. 7.
    Schneider, P. and Börner, W. (1991) Peripheral quantitative computed tomography for bone mineral measurements using a new special QCT-scanner: methodology, normal values, comparison with manifest osteoporosis, Fortschr. Röntgenstr. 154, 292–299.CrossRefGoogle Scholar
  8. 8.
    Hermann, G. T. (1980) Image reconstruction from projections: the fundamentals of computerized tomography. Orlando: Academic Press.Google Scholar
  9. 9.
    Banu, M. J., Orhii, Pb., Mejia, W., McCarter, R. J. M., Mosekilde L., Thomsen, J. S., Kalu, D. N. (1999) Analysis of the effects of growth hormone, voluntary exercise and food restriction on diaphyseal bone in female F344 rats. Bone 25, 469–480.PubMedCrossRefGoogle Scholar
  10. 10.
    Breen, S. A., Millest, A. J., Loveday, B. E., Johnstone, D. and Waterton, J. C. (1996) Regional analysis of bone mineral density in the distal femur and proximal tibia using peripheral computed tomography in the rat in vivo. Calcif. Tissue Int. 58, 449–453.PubMedGoogle Scholar
  11. 11.
    Beamer, W. G., Donahue, L. R., Rosen, C. J. and Baylink, D. J. (1996) Genetic variability in adult bone density among inbred strains of mice. Bone 18, 397–403.PubMedCrossRefGoogle Scholar
  12. 12.
    Graichen, H., Lochmüller, E. M., Wolf, E,, Langkabel, B., Stammberger, T., Haubner, M., Renner-Müller, I., Engelmeier, K. H., and Eckstein, F. (1998) A non-destructive technique for a 3-D microstructural phenotypic characterisation of bones in genetically altered mice: preliminary data in growth hormone transgenic animals and normal controls. Anat. Embryol. 199, 239–248.CrossRefGoogle Scholar
  13. 13.
    Wronski, T. J., Dann, L. M., Scott, K. S.,and Cintron, M. (1989) Long-term effects of ovariectomy and aging on the rat skeleton. Calcif.Tissue. Int. 45, 360–366.Google Scholar
  14. 14.
    Yamazaki, I., and Yamaguchi, H. (1989) Characteristics of an ovariectomized osteopenic rat model. J. Bone Miner. Res. 4, 13–22PubMedCrossRefGoogle Scholar
  15. 15.
    Kalu, D. N. (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 15, 175–192.PubMedCrossRefGoogle Scholar
  16. 16.
    Andreassen, T. T., Jorgensen, P. H., Flyvbjerg, A., Orskov, A. and Oxlund, H. (1995) Growth hormone stimulates bone formation and strength of cortical bone in aged rats. J. Bone Miner. Res. 10, 1057–1067.PubMedCrossRefGoogle Scholar
  17. 17.
    Andreassen, T. T. and Oxlund, H. (2000) The influence of combined parathyroid hormone and growth hormone treatment on cortical bone in aged ovariectomized rats. J. Bone Miner. Res. 15, 2266–2275.PubMedCrossRefGoogle Scholar
  18. 18.
    Weber, K., Goldberg, M., Stangassinger, M. and Erben, R. G. (2001) 1α-hydroxyvitamin D2 is less toxic but not bone selective relative to 1α-hydroxyvitamin D3 in ovariectomized rats. J. Bone Miner. Res. 16, 639–651.PubMedCrossRefGoogle Scholar
  19. 19.
    Ejersted, C., Andreassen, T. T., Oxlund, H., Jorgensen, P. H., Bak, B,. Haggblad, J., Torring, O. and Nilsson, M. H. (1993) Human parathyroid hormone (1–34) and (1–84) increase the mechanical strength and thickness of cortical bone in rats. J. Bone Miner. Res. 8, 1097–1101.PubMedCrossRefGoogle Scholar
  20. 20.
    Ejersted, C., Andreassen, T. T., Nilsson, M. H. and Oxlund, H. (1994) Human parathyroid hormone (1–34) increases bone formation and strength of cortical bone in aged rats. Eur. J. Endocrinol. 130, 201–207.PubMedCrossRefGoogle Scholar
  21. 21.
    Jee, W. S. S., Mori, S., Li, X. J. and Chan, S. (1990) Prostaglandin E2 enhances cortical bone mass and actiavtes intracortical bone remodeling in intact and ovariectomized female rats. Bone 11, 253–266.PubMedCrossRefGoogle Scholar
  22. 22.
    Jee, W. S. S., Ke, H. Z. and Li, X. J. (1991) Long-term anabolic effects of prostaglandin-E2 on tibial diaphyseal bone in male rats. Bone Miner. 15, 33–55.PubMedCrossRefGoogle Scholar
  23. 23.
    Gunness-Hey, M. and Hock, J. M. (1984) Increased trabecular bone mass in rats treated with synthetic parathyroid hormone. Metab. Bone & Rel. Dis. 5, 177–181.CrossRefGoogle Scholar
  24. 24.
    Gunness-Hey, M., and Hock, J. M. (1993) Anabolic effect of parathyroid hormone on cancellous and cortical bone histology. Bone 14, 277–281.CrossRefGoogle Scholar
  25. 25.
    Pun, S., Dearden, R. L., Ratkus, A. M., Liang, H., and Wronski, T. J. (2001) Decreased bone anabolic effect of basic fibroblast growth factor at fatty marrow sites in ovariectomized rats. Bone 28, 220226.Google Scholar
  26. 26.
    Mori, S., Jee, W. S. S., and Li. X, J. (1992) Production of new trabecular bone in osteopenic ovariectomized rats by prostaglandin E2. Calcif. Tissue Int. 50, 80–87.Google Scholar
  27. 27.
    Erben, R. G., Bromm, S., Stangassinger, M. (1998) Therapeutic efficacy of 1α,25-hydroxyvitamin D3 and calcium in osteopenic ovariectomized rats: Evidence for a direct anabolic effect of 1α,25-hydroxyvitamin D3 on bone. Endocrinol. 139, 4319–4328CrossRefGoogle Scholar
  28. 28.
    Kneissel, M., Boyde, A., and Gasser, J. A. (2001) Bone tissue and its mineralization in aged estrogen-depleted rats after long-term intermittent treatment with parathyroid hormone (PTH) analog SDZ PTS 893 or human PTH(1–34), Bone 28, 237–250.PubMedCrossRefGoogle Scholar
  29. 29.
    Boyde A., Travers. R., Glorieux, F. H., and Jones, S. J. (1999) The mineralisation density of iliac crest bone from children with osteogenesis imperfecta. Calcif. Tissue Int. 64, 185–190.PubMedCrossRefGoogle Scholar
  30. 30.
    Boyde, A., Jones, S. J., Aerssens, J., and Dequeker, J. (1995) Mineral density quantification of the human cortical illiac crest by backscattered electron image analysis: Variations with age, sex, and degree of osteoarthritis. Bone 16, 619–627.PubMedCrossRefGoogle Scholar
  31. 31.
    Roschger, P., Plenk, H. Jr., Klaushofer, K. and Eschberger, J. (1995) A new scanning electron microscopy approach for the quantification of bone mineral distribution: Backscattered electron image grey levels correlated to calcium K alpha-line intensities. Scan. Microsc. 9, 75–88.Google Scholar
  32. 32.
    Rauch, F., and Schönau, E. (2001) Changes in Bone Density During Childhood and Adolescence: An Approach Based on Bone’s Biological Organisation. J. Bone Miner. Res. 16, 597–604PubMedCrossRefGoogle Scholar
  33. 33.
    Ferretti, J. L., Capozza, R. F., and Zanchetta, J. R. (1996) Mechanical Validation of a Tomographic (pQCT) Index for Noninvasive Estimation of Bending Strength of Rat Femurs. Bone 18, 97–102.PubMedCrossRefGoogle Scholar
  34. 34.
    Rittweger, J., Michaelis, I., Giehl, M., Wüsecke, P., and Felsenberg, D. (2004) Adjusting for the Partial Volume Effect in Cortical Bone analyses of pQCT. J. Musculoskel. Neuron. Interact. 4, 436–441.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Musculoskeletal DiseasesNovartis Institutes for BioMedical ResearchBaselSwitzerland
  2. 2.Stratec Medizintechnik GmbHPforzheimGermany

Personalised recommendations