Advertisement

Isolation and Purification of Rabbit Osteoclasts

  • Fraser P. Coxon
  • Michael J. Rogers
  • Julie C. Crockett
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 816)

Abstract

Newborn rabbits provide a useful and readily available source of authentic mature osteoclasts, which can be easily isolated directly from the long bones in relatively large numbers, compared to other rodents. Primary cultures of authentic rabbit osteoclasts on resorbable substrates in vitro are an ideal model of osteoclast behaviour in vivo, and for some studies may be preferable to osteoclast-like cells generated in vitro from bone marrow cultures or from human peripheral blood, for example in assessing osteoclast-mediated bone resorption independently of effects on osteoclast formation. Rabbits also provide a particularly useful model for determining the effects of pharmacological agents on osteoclasts in vivo, by isolating osteoclasts using immunomagnetic bead separation (with an antibody to αVβ3) at the desired time following in vivo administration of the drug. Since osteoclasts are abundant in newborn rabbits, sufficient numbers of osteoclasts can be retrieved using this method for molecular and biochemical analyses.

Key words

Rabbit Osteoclast Bone resorption Polarisation Vitronectin receptor 

References

  1. 1.
    Shakespeare, W., Yang, M., Bohacek, R., Cerasoli, F., Stebbins, K., Sundaramoorthi, R., Azimioara, M., Vu, C., Pradeepan, S., Metcalf, C., III, Haraldson, C., Merry, T., Dalgarno, D., Narula, S., Hatada, M., Lu, X., van Schravendijk, M. R., Adams, S., Violette, S., Smith, J., Guan, W., Bartlett, C., Herson, J., Iuliucci, J., Weigele, M., and Sawyer, T. (2000) Structure-based design of an osteoclast-selective, nonpeptide src homology 2 inhibitor with in vivo antiresorptive activity. Proc. Natl. Acad. Sci. USA 97, 9373–9378.PubMedCrossRefGoogle Scholar
  2. 2.
    Fisher, J. E., Rogers, M. J., Halasy, J. M., Luckman, S. P., Hughes, D. E., Masarachia, P. J., Wesolowski, G., Russell, R. G. G., Rodan, G. A., and Reszka, A. A. (1999) Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption and kinase activation in vitro. Proc. Natl. Acad. Sci. USA 96, 133–138.PubMedCrossRefGoogle Scholar
  3. 3.
    Coxon, F. P., Helfrich, M. H., van’t Hof, R. J., Sebti, S. M., Ralston, S. H., Hamilton, A. D., and Rogers, M. J. (2000) Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298. J. Bone Miner. Res. 15, 1467–1476.Google Scholar
  4. 4.
    Stenbeck, G., and Horton, M. A. (2004) Endocytic trafficking in actively resorbing osteoclasts. J. Cell Sci. 117, 827–836.PubMedCrossRefGoogle Scholar
  5. 5.
    Coxon, F. P., Thompson, K., Roelofs, A. J., Ebetino, F. H., and Rogers, M. J. (2008). Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells. Bone 42, 848–860.PubMedCrossRefGoogle Scholar
  6. 6.
    Benford, H. L., McGowan, N. W., Helfrich, M. H., Nuttall, M. E., and Rogers, M. J. (2001) Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone 28, 465–473.PubMedCrossRefGoogle Scholar
  7. 7.
    Weidema, A. F., Dixon, S. J., and Sims, S. M. (2001) Activation of P2Y but not P2X(4) nucleotide receptors causes elevation of [Ca2+]i in mammalian osteoclasts. Am. J. Physiol. Cell Physiol. 280, C1531–C1539.PubMedGoogle Scholar
  8. 8.
    Lees, R. L., Sabharwal, V. K., and Heersche, J. N. (2001) Resorptive state and cell size influence intracellular pH regulation in rabbit osteoclasts cultured on collagen-hydroxyapatite films. Bone 28, 187–194.PubMedCrossRefGoogle Scholar
  9. 9.
    Chikazu, D., Hakeda, Y., Ogata, N., Nemoto, K., Itabashi, A., Takato, T., Kumegawa, M., Nakamura, K., and Kawaguchi, H. (2000) Fibroblast growth factor (FGF)-2 directly stimulates mature osteoclast function through activation of FGF receptor 1 and p42/p44 MAP kinase. J. Biol. Chem. 275, 31444–31450.PubMedCrossRefGoogle Scholar
  10. 10.
    Tezuka, K., Sato, T., Kamioka, H., Nijweide, P. J., Tanaka, K., Matsuo, T., Ohta, M., Kurihara, N., Hakeda, Y., and Kumegawa, M. (1992) Identification of osteopontin in isolated rabbit osteoclasts. Biochem. Biophys. Res. Commun. 186, 911–917.PubMedCrossRefGoogle Scholar
  11. 11.
    David, J. P., Neff, L., Chen, Y., Rincon, M., Horne, W. C., and Baron, R. (1998) A new method to isolate large numbers of rabbit osteoclasts and osteoclast-like cells: application to the characterization of serum response element binding proteins during osteoclast differentiation. J. Bone Miner. Res. 13, 1730–1738.PubMedCrossRefGoogle Scholar
  12. 12.
    Collin-Osdoby, P., Oursler, M. J., Webber, D., and Osdoby, P. (1991) Osteoclast-specific monoclonal antibodies coupled to magnetic beads provide a rapid and efficient method of purifying avian osteoclasts. J. Bone Miner. Res. 6, 1353–1365.PubMedCrossRefGoogle Scholar
  13. 13.
    Nesbitt, S., Nesbit, A., Helfrich, M., and Horton, M. (1993) Biochemical characterization of human osteoclast integrins. Osteoclasts express alpha v beta 3, alpha 2 beta 1, and alpha v beta 1 integrins. J. Biol. Chem. 268, 16737–16745.PubMedGoogle Scholar
  14. 14.
    Frith, J. C., Mönkkönen, J., Auriola, S., Mönkkönen, H., and Rogers, M. J. (2001) The molecular mechanism of action of the antiresorptive and anti-inflammatory drug clodronate. Evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis. Arthritis Rheum. 44, 2201–2210.Google Scholar
  15. 15.
    Coxon, F. P., Ebetino, F. H., Mules, E. H., Seabra, M. C., McKenna, C. E., and Rogers, M. J. (2005) Phosphonocarboxylate inhibitors of Rab geranylgeranyl transferase disrupt the prenylation and membrane localization of Rab proteins in osteoclasts in vitro and in vivo. Bone 37, 349–358.PubMedCrossRefGoogle Scholar
  16. 16.
    Roelofs, A. J., Coxon, F. P., Ebetino, F. H., Lundy, M. W., Henneman, Z. J., Nancollas, G. H., Sun, S., Blazewska, K. M., Lynn, F. B., Kashemirov, B. A., Khalid, A. B., McKenna, C. E., and Rogers, M. J. (2010) Fluorescent risedronate analogs reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo. J. Bone Miner. Res. 25, 606–616.CrossRefGoogle Scholar
  17. 17.
    Staal, A., Frith, J. C., French, M. H., Swartz, J., Gungor, T., Harrity, T. W., Tamasi, J., Rogers, M. J., and Feyen, J. H. M. (2003) The ability of statins to inhibit bone resorption is directly related to their inhibitory effect on HMG-CoA reductase activity. J. Bone Miner. Res. 18, 88–96.PubMedCrossRefGoogle Scholar
  18. 18.
    Hughes, A., Idris, A., Rogers, M. J., and Crockett, J. C. (2007) Rosuvastatin inhibits osteoclast function in vitro and prevents in vivo bone loss via an anti-resorptive mechanism. Calcif. Tissue Int. 81, 403–413.Google Scholar
  19. 19.
    Räikkönen, J., Crockett, J. C., Rogers, M. J., Mönkkönen, H., Auriola, S., and Mönkkönen, J. (2009) Zoledronic acid induces the formation of a pro-apoptotic ATP analogue and isopentenyl pyrophosphate in osteoclasts in vivo and in MCF-7 cells in vitro. Br. J. Pharmacol. 157, 427–435.Google Scholar
  20. 20.
    Minkin, C. (1982) Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif. Tissue Int. 34, 285–290.PubMedCrossRefGoogle Scholar
  21. 21.
    Van’t Hof, R. J., Tuinenburg-Bol, R. A., and Nijweide, P. J. (1995) Induction of osteoclast characteristics in cultured avian blood monocytes; modulation by osteoblasts and 1,25-(OH)2 vitamin D3. Int. J. Exp. Pathol. 76, 205–214.PubMedGoogle Scholar
  22. 22.
    Collin-Osdoby, P., Yu, X., Zheng, H., and Osdoby, P. (2003) RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol. Med. 80, 153–166.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Fraser P. Coxon
    • 1
  • Michael J. Rogers
    • 2
  • Julie C. Crockett
    • 1
  1. 1.Musculoskeletal Research Programme, Division of Applied Medicine, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
  2. 2.Musculoskeletal Research Programme, Division of Applied Medicine, Institute of Medical SciencesUniversity of AberdeenAberdeenUK

Personalised recommendations