Probing Endogenous RNA Polymerase II Pre-initiation Complexes by Electrophoretic Mobility Shift Assay

  • Emmanuelle Wilhelm
  • Christopher Takacs
  • Brendan BellEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 809)


RNA polymerase II (Pol II) plays a crucial role in eukaryotic biology since it is necessary for the expression of all protein-coding genes as well as most microRNAs and several small nuclear RNAs. Pol II is specifically recruited to core promoter DNA via its association with general transcription factors (GTFs) that possess DNA binding activity such as TFIID, TFIIA, and TFIIB. The large multi-protein assemblies of Pol II together with the GTFs required for productive transcription are termed pre-initiation complexes (PICs). To date, studies of the interaction of PICs with promoter DNA have relied on the use of purified or recombinant GTFs. Recent findings have demonstrated an astonishing diversity in the function of core promoters as well as in the protein composition of PICs. The currently known subset of GTFs alone cannot account for observed PIC and core promoter diversity. In order to identify the full complement of factors that impart PIC specificity, techniques to analyze the DNA binding of endogenous PIC are essential. Analysis of endogenous PIC formation has remained out of reach due to technical hurdles presumably including the large size of endogenous PIC, their highly dynamic association with core promoters, and the complex topology of DNA bound to PIC. We have optimized electrophoretic mobility shift assays (EMSAs) to achieve the detection of endogenous Pol II PIC from nuclear extracts of human cells. Here, we provide a robust and sensitive EMSA method for the analysis of endogenous Pol II PICs.

Key words

Pre-initiation complex RNA polymerase II TFIID TATA-binding protein Electrophoretic mobility shift assay TBP-associated factor General transcription factor 



We thank Drs. Arndt Benecke and Antonio Conconi for critical comments on the manuscript. We are grateful to Dr. Laszlo Tora for the generous gift of monoclonal antibodies directed against TFIID subunits.


  1. 1.
    Young R. A. (1991) RNA polymerase II. Annu Rev Biochem 60: 689–715PubMedCrossRefGoogle Scholar
  2. 2.
    Lee Y., Kim M., Han J., Yeom K. H., Lee S., et al. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23: 4051–60PubMedCrossRefGoogle Scholar
  3. 3.
    Jawdekar G. W., Henry R. W. (2008) Transcriptional regulation of human small nuclear RNA genes. Biochim Biophys Acta 1779: 295–305PubMedGoogle Scholar
  4. 4.
    Thomas M. C., Chiang C. M. (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41: 105–78PubMedCrossRefGoogle Scholar
  5. 5.
    Buratowski S., Hahn S., Guarente L., Sharp P. A. (1989) Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56: 549–61PubMedCrossRefGoogle Scholar
  6. 6.
    Zerby D., Lieberman P. M. (1997) Functional analysis of TFIID-activator interaction by magnesium-agarose gel electrophoresis. Methods 12: 217–23PubMedCrossRefGoogle Scholar
  7. 7.
    Pugh B. F., Tjian R. (1992) Diverse transcriptional functions of the multisubunit eukaryotic TFIID complex. J Biol Chem 267: 679–82PubMedGoogle Scholar
  8. 8.
    Taatjes D. J. (2010) The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem Sci 35: 315–22PubMedCrossRefGoogle Scholar
  9. 9.
    Sprouse R. O., Karpova T. S., Mueller F., Dasgupta A., McNally J. G., Auble D. T. (2008) Regulation of TATA-binding protein dynamics in living yeast cells. Proc Natl Acad Sci USA 105: 13304–8PubMedCrossRefGoogle Scholar
  10. 10.
    van Werven F. J., van Teeffelen H. A., Holstege F. C., Timmers H. T. (2009) Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome. Nat Struct Mol Biol 16: 1043–8PubMedCrossRefGoogle Scholar
  11. 11.
    Metivier R., Penot G., Hubner M. R., Reid G., Brand H., Kos M., Gannon F. (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115: 751–63PubMedCrossRefGoogle Scholar
  12. 12.
    de Graaf P., Mousson F., Geverts B., Scheer E., Tora L., Houtsmuller A.B., Timmers H.T. (2010) Chromatin interaction of TATA-binding protein is dynamically regulated in human cells. J Cell Sci 123: 2663–2671PubMedCrossRefGoogle Scholar
  13. 13.
    Coulombe B., Burton Z. F. (1999) DNA bending and wrapping around RNA polymerase: a “revolutionary” model describing transcriptional mechanisms. Microbiol Mol Biol Rev 63: 457–78PubMedGoogle Scholar
  14. 14.
    Smale S. T., Kadonaga J. T. (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72: 449–79PubMedCrossRefGoogle Scholar
  15. 15.
    Juven-Gershon T., Kadonaga J. T. (2010) Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 339: 225–9PubMedCrossRefGoogle Scholar
  16. 16.
    Bell B., Tora L. (1999) Regulation of gene expression by multiple forms of TFIID and other novel TAFII-containing complexes. Exp Cell Res 246: 11–9PubMedCrossRefGoogle Scholar
  17. 17.
    Mousson F., Kolkman A., Pijnappel W. W., Timmers H. T., Heck A. J. (2008) Quantitative proteomics reveals regulation of dynamic components within TATA-binding protein (TBP) transcription complexes. Mol Cell Proteomics 7: 845–52PubMedCrossRefGoogle Scholar
  18. 18.
    Tora L., Timmers H. T. (2010) The TATA box regulates TATA-binding protein (TBP) dynamics in vivo. Trends Biochem Sci 35: 309–14PubMedCrossRefGoogle Scholar
  19. 19.
    Dignam J. D., Lebovitz R. M., Roeder R. G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475–89PubMedCrossRefGoogle Scholar
  20. 20.
    Bell B., Scheer E., Tora L. (2001) Identification of hTAF(II)80 delta links apoptotic signaling pathways to transcription factor TFIID function. Mol Cell 8: 591–600PubMedCrossRefGoogle Scholar
  21. 21.
    Lescure, A., Lutz, Y., Eberhard, D., Jacq, X., Krol, A., Grummt, I., Davidson, I., Chambon, P., and Tora, L. (1994) The N-terminal domain of the human TATA-binding protein plays a role in transcription from TATA-containing RNA polymerase II and III promoters. EMBO J 13: 1166–75PubMedGoogle Scholar
  22. 22.
    Bertolotti A., Lutz Y., Heard D. J., Chambon P., Tora L. (1996) hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro- oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. EMBO J 15: 5022–31PubMedGoogle Scholar
  23. 23.
    Joyce C. M., Derbyshire V. (1995) Purification of Escherichia coli DNA polymerase I and Klenow fragment. Methods Enzymol 262: 3–13PubMedCrossRefGoogle Scholar
  24. 24.
    Turner R. M., Jr., Grindley N. D., Joyce C. M. (2003) Interaction of DNA polymerase I (Klenow fragment) with the single-stranded template beyond the site of synthesis. Biochemistry 42: 2373–85PubMedCrossRefGoogle Scholar
  25. 25.
    Li Y. C., Ross J., Scheppler J. A., Franza B. R., Jr. (1991) An in vitro transcription analysis of early responses of the human immunodeficiency virus type 1 long terminal repeat to different transcriptional activators. Mol Cell Biol 11: 1883–93PubMedGoogle Scholar
  26. 26.
    Zerivitz K., Akusjarvi G. (1989) An improved nuclear extract preparation method. Gene Anal Tech 6: 101–9PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Emmanuelle Wilhelm
    • 1
  • Christopher Takacs
    • 1
  • Brendan Bell
    • 1
    Email author
  1. 1.RNA Group, Département de microbiologie et d’infectiologie, Faculté de médecine et sciences de la santéUniversité de SherbrookeSherbrookeCanada

Personalised recommendations