Skip to main content

Chromatin Immunoprecipitation of Mouse Embryos

  • Protocol
  • First Online:
Transcriptional Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 809))

Abstract

During prenatal development, a large number of different cell types are formed, the vast majority of which contain identical genetic material. The basis of the great variety in cell phenotype and function is the differential expression of the approximately 25,000 genes in the mammalian genome. Transcriptional activity is regulated at many levels by proteins, including members of the basal transcriptional apparatus, DNA-binding transcription factors, and chromatin-binding proteins. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency, with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method to assess if chromatin modifications or proteins are present at a specific locus. ChIP involves the cross linking of DNA and associated proteins and immunoprecipitation using specific antibodies to DNA-associated proteins followed by examination of the co-precipitated DNA sequences or proteins. In the last few years, ChIP has become an essential technique for scientists studying transcriptional regulation and chromatin structure. Using ChIP on mouse embryos, we can document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development. Here, we describe a ChIP technique adapted for mouse embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature 389, 251–260.

    Google Scholar 

  2. Kireeva, N., Lakonishok, M., Kireev, I., Hirano, T., and Belmont, A. S. (2004) Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure, J Cell Biol 166, 775–785.

    Google Scholar 

  3. Tremethick, D. J. (2007) Higher-order structures of chromatin: the elusive 30 nm fiber, Cell 128, 651–654.

    Google Scholar 

  4. Schones, D. E., and Zhao, K. (2008) Genome-wide approaches to studying chromatin modifications, Nat Rev Genet 9, 179–191.

    Google Scholar 

  5. Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R., and Peterson, C. L. (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions, Science 311, 844–847.

    Google Scholar 

  6. Voss, A. K., Collin, C., Dixon, M. P., and Thomas, T. (2009) Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity, Dev Cell 17, 674–686.

    Google Scholar 

  7. Pfaffl, M. W. (2004) Quantification strategies in real-time PCR, in A-Z of quantitative PCR (Bustin, S. A., Ed.), International University Line (IUL), La Jolla, CA, USA.

    Google Scholar 

  8. Taneyhill, L. A., and Adams, M. S. (2008) Investigating regulatory factors and their DNA binding affinities through real time quantitative PCR (RT-QPCR) and chromatin immunoprecipitation (ChIP) assays, Methods Cell Biol 87, 367–389.

    Google Scholar 

  9. Henikoff, S. (2008) Nucleosome destabilization in the epigenetic regulation of gene expression, Nat Rev Genet 9, 15–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne K. Voss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Voss, A.K., Dixon, M.P., McLennan, T., Kueh, A.J., Thomas, T. (2012). Chromatin Immunoprecipitation of Mouse Embryos. In: Vancura, A. (eds) Transcriptional Regulation. Methods in Molecular Biology, vol 809. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-376-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-376-9_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-375-2

  • Online ISBN: 978-1-61779-376-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics