Recombinant AAV Delivery to the Central Nervous System

  • Olivier Bockstael
  • Kevin D. Foust
  • Brian Kaspar
  • Liliane TenenbaumEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 807)


Recombinant AAV-mediated gene delivery to the CNS can be performed either by direct delivery at the target site or from the periphery, using intramuscular injections and retrograde transport along motor neuron projections or intravenous injections and blood–brain barrier crossing.

In this chapter, we describe:
  1. 1.

    Methods for recombinant virus administration, including stereotactic surgery, intramuscular, and intravenous administration.

  2. 2.

    Methods to evaluate the number and biodistribution of brain and spinal cord cells expressing the transgene by immunohistochemisty as well as the amount of transgene product by ELISA in the target region.

  3. 3.

    Methods to characterize the cellular specificity of transgene expression by double immunofluorescence.

  4. 4.

    Methods to quantify the amounts of viral DNA as well as of transgene mRNA by quantitative PCR and RT-PCR, respectively.


Key words

Stereotaxy Intravenous injection Retrograde transport Immunohistochemistry Confocal microscopy GFP GDNF Quantitative PCR mRNA Hirt DNA 



O.B. was the recipient of a predoctoral fellowship from the Belgian “FRIA” (Fonds pour la Recherche dans l’Industrie et l’Agriculture and FNRS-Télévie). L.T. was the recipient of a “Crédit aux chercheurs” from the Belgian National Research Foundation. This work was also supported by grants from “Fonds National de la Recherche Scientifique Médicale,” “Région Bruxelles-Capitale,” and “Association Française contre les Myopathies.”

The Kaspar Laboratory is funded in part from The National Institute of Health (NIH).


  1. 1.
    Ciron C, Desmaris N, Colle MA, Raoul S, Joussemet B, Verot L, et al. (2006) Gene therapy of the brain in the dog model of Hurler’s syndrome. Ann Neurol 60, 204213.PubMedCrossRefGoogle Scholar
  2. 2.
    Cachon-Gonzalez MB, Wang SZ, Lynch A, Ziegler R, Cheng SH, Cox TM. (2006) Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci USA 103, 103738.PubMedCrossRefGoogle Scholar
  3. 3.
    Dodge JC, Clarke J, Song A, Bu J, Yang W, Taksir TV, et al. (2005) Gene transfer of human acid sphingomyelinase corrects neuropathology and motor deficits in a mouse model of Niemann-Pick type A disease. Proc Natl Acad Sci USA 102, 178227.PubMedCrossRefGoogle Scholar
  4. 4.
    Fu H, Samulski RJ, McCown TJ, Picornell YJ, Fletcher D, Muenzer J. (2002) Neurological correction of lysosomal storage in a mucopolysaccharidosis IIIB mouse model by adeno-associated virus-mediated gene delivery. Mol Ther 5, 42–49.PubMedCrossRefGoogle Scholar
  5. 5.
    Liu G, Chen YH, He X, Martins I, Heth JA, Chiorini JA, et al. (2007) Adeno-associated virus type 5 reduces learning deficits and restores glutamate receptor subunit levels in MPS VII mice CNS. Mol Ther 15, 242–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Kirik D, Rosenblad C, Bjorklund A, Mandel RJ. Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes ­functional regeneration in the lesioned nigrostriatal system. J Neurosci 2000 Jun 15;20(12):4686–4700.PubMedGoogle Scholar
  7. 7.
    Mandel RJ, Spratt SK, Snyder RO, Leff SE. (1997) Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson’s disease in rats. Proc Natl Acad Sci USA 94, 14083–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Yang X, Mertens B, Lehtonen E, Vercammen L, Bockstael O, Chtarto A, et al. (2009) Reversible neurochemical changes mediated by delayed intrastriatal glial cell line-derived neurotrophic factor gene delivery in a partial Parkinson’s disease rat model. J Gene Med 11, 899–912.PubMedCrossRefGoogle Scholar
  9. 9.
    Kells AP, Henry RA, Connor B. (2008) AAV-BDNF mediated attenuation of quinolinic acid-induced neuropathology and motor function impairment. Gene Ther 15, 966–977.PubMedCrossRefGoogle Scholar
  10. 10.
    Luo J, Kaplitt MG, Fitzsimons HL, Zuzga DS, Liu Y, Oshinsky ML, et al. (2002) Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science 298, 425–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Haberman RP, Samulski RJ, McCown TJ. (2003) Attenuation of seizures and neuronal death by adeno-associated virus vector galanin expression and secretion. Nat Med 9, 1076–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Shen Y, Muramatsu SI, Ikeguchi K, Fujimoto KI, Fan DS, Ogawa M, et al. (2000) Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson’s disease. Hum Gene Ther 11, 1509–19.PubMedCrossRefGoogle Scholar
  13. 13.
    Carlsson T, Winkler C, Burger C, Muzyczka N, Mandel RJ, Cenci A, et al. Reversal of dyskinesias in an animal model of Parkinson’s disease by continuous L-DOPA delivery using rAAV vectors. (2005) Brain 128, 559–69.PubMedCrossRefGoogle Scholar
  14. 14.
    Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, et al. (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10, 816–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ. (2005) Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther 12, 618–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Johnston LC, Su X, Maguire-Zeiss K, Horovitz K, Ankoudinova I, Guschin D, et al. (2008) Human interleukin-10 gene transfer is protective in a rat model of Parkinson’s disease. Mol Ther 16, 1392–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Yin D, Forsayeth J, Bankiewicz KS. (2009) Optimized cannula design and placement for convection-enhanced delivery in rat striatum. J Neurosci Methods 187, 46–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Mastakov MY, Baer K, Kotin RM, During MJ. (2002) Recombinant adeno-associated virus serotypes 2- and 5-mediated gene transfer in the mammalian brain: quantitative analysis of heparin co-infusion. Mol Ther 5, 371–380.PubMedCrossRefGoogle Scholar
  19. 19.
    Mastakov MY, Baer K, Xu R, Fitzsimons H, During MJ. (2001) Combined injection of rAAV with mannitol enhances gene expression in the rat brain. Mol Ther 3, 225–232.PubMedCrossRefGoogle Scholar
  20. 20.
    Paxinos, G. and Watson, 1997. “The rat brain in stereotaxic coordinates”, 3rd compact edition, Academic Press, Orlando, FLAGoogle Scholar
  21. 21.
    Paxinos, G. and Franklin, K.B.J., 1997. “The mouse brain in stereotaxic coordinates” 2nd edition, Academic PressGoogle Scholar
  22. 22.
    Peden CS, Burger C, Muzyczka N, Mandel RJ. (2004) Circulating anti-wild-type adeno-­associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J Virol 78, 6344–59.PubMedCrossRefGoogle Scholar
  23. 23.
    Peden CS, Manfredsson FP, Reimsnider SK, Poirier AE, Burger C, Muzyczka N, et al. (2009) Striatal readministration of rAAV vectors reveals an immune response against AAV2 capsids that can be circumvented. Mol Ther 17, 524–537.PubMedCrossRefGoogle Scholar
  24. 24.
    Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM, et al. (2009) Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 17, 1187–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27, 59–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Saunders NR, Joakim EC, Dziegielewska KM. (2009) The neonatal blood-brain barrier is functionally effective, and immaturity does not explain differential targeting of AAV9. Nat Biotechnol 27, 804–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Towne C, Schneider BL, Kieran D, Redmond DE, Jr., Aebischer P. (2010) Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Ther 17, 141–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH. (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301, 839–842.PubMedCrossRefGoogle Scholar
  29. 29.
    Zheng H, Qiao C, Wang CH, Li J, Li J, Yuan Z, et al. (2010) Efficient retrograde transport of adeno-associated virus type 8 to spinal cord and dorsal root ganglion after vector delivery in muscle. Hum Gene Ther 21, 87–97.PubMedCrossRefGoogle Scholar
  30. 30.
    Hollis ER, Kadoya K, Hirsch M, Samulski RJ, Tuszynski MH. (2008) Efficient retrograde neuronal transduction utilizing self-complementary AAV1. Mol Ther 16, 296–301.PubMedCrossRefGoogle Scholar
  31. 31.
    Sterio DC. (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134, 127–36.PubMedCrossRefGoogle Scholar
  32. 32.
    Hirt B. (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26: 365–9.Google Scholar
  33. 33.
    Okragly AJ, Haak-Frendscho M. (1997) An acid-treatment method for the enhanced detection of GDNF in biological samples. Exp Neurol 145, 592–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Olivier Bockstael
    • 1
  • Kevin D. Foust
    • 2
  • Brian Kaspar
    • 2
  • Liliane Tenenbaum
    • 1
    • 3
    Email author
  1. 1.Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
  2. 2.The Research Institute at Nationwide Children’s HospitalColumbusUSA
  3. 3.Lausanne Hospital UniversityLausanneSwitzerland

Personalised recommendations