AAV-Mediated Liver-Directed Gene Therapy

  • Mark S. SandsEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 807)


The liver is directly or indirectly involved in many essential processes and is affected by numerous inherited diseases. Therefore, many inherited diseases could be effectively treated by targeting the liver using gene transfer approaches. The challenges associated with liver-directed gene therapy are efficient targeting of hepatocytes, stability of the vector genome, and persistent high level expression. Many of these obstacles can be overcome with adeno-associated viral (AAV) gene transfer vectors. The first AAV gene transfer ­vector developed for in vivo use was based on the AAV2 serotype. AAV2 has a broad tropism and transduces many cell types, including hepatocytes, relatively efficiently in vivo. The capsid protein confers the serological profile and at least 12 primate AAV serotypes have already been characterized. Importantly, pseudotyping a recombinant AAV vector with different capsid proteins can dramatically alter the tropism. Both AAV8 and AAV9 have higher affinities for hepatocytes when compared to AAV2. In particular, AAV8 can transduce three- to fourfold more hepatocytes and deliver three- to fourfold more genomes per transduced cell when compared to AAV2. Depending on the dose, AAV8 can transduce up to 90–95% of hepatocytes in the mouse liver following intraportal vein injection. Interestingly, comparable levels of transduction can be achieved following intravenous injection. Direct intraparenchymal injection of an AAV vector also mediates relatively high level long term expression. Additional specificity can be conferred by using liver-specific promoters in conjunction with AAV8 capsid proteins. In addition to treating primary hepatocyte defects, immune reactions to transgene products can be minimized by circumventing the fixed tissue macrophages of the liver, Kupffer cells, and limiting expression to hepatocytes. The ability to target hepatocytes by virtue of the AAV serotype and the use of liver-specific promoters allows investigators to test novel therapeutic approaches and answer basic clinical and biological questions.

Key words

Adeno-associated virus Gene therapy Liver Hepatocytes Inherited metabolic disease 


  1. 1.
    Cecil Textbook of Medicine, 22nd edition (2004), Saunders, Philadelphia, PA. Goldman, L and Ausiello, D, eds.Google Scholar
  2. 2.
    Hermonat, P. L., and Muzyczka, N. (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: Transduction of neomycin resistance into mammalian tissue culture cells Proc Natl Acad Sci 81, 6466–6470.Google Scholar
  3. 3.
    Grimm, D., Kern, A., Rittner, K., and Kleinschmidt, J. A. (1998) Novel tools for production and purification of recombinant adeno-associated virus vectors Hum Gene Ther 9, 2745–2460.Google Scholar
  4. 4.
    Zolotukhin, S., Byrne, B. J., Mason, E., Zolotukhin, I., Potter, M., Chesnut, K., Summerford, C., Samulski, R. J., and Muzyzcka, N. (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield Gene Ther 6, 973–985.Google Scholar
  5. 5.
    Xiao, X., Li, J., and Samulski, R. J. (1996) Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector J Virol 70, 8098–8108.Google Scholar
  6. 6.
    Ponnazhagan, S., Mukherjee, P., Yoder, M. C., Wang, X. S., Zhou, S. Z., Kaplan, J., Wadsworth, S., and Srivastava, A. (1997) Adeno-associated virus 2-mediated gene transfer in vivo: Organ-tropism and expression of transduced sequences in mice Gene 190, 203–210.Google Scholar
  7. 7.
    Daly, T. M., Vogler, C., Levy, B., Haskins, M. E., and Sands, M. S. (1999) Intravenous injection of recombinant AAV into neonatal mice with mucopolysaccharidosis type VII results in persistent β-glucuronidase expression and widespread reduction of lysosomal storage Proc Natl Acad Sci 96, 2296–2300.Google Scholar
  8. 8.
    Daly, T. M., Ohlemiller, K. K., Roberts, M. S., Vogler, C. A., and Sands, M. S. (2001) Prevention of systemic clinical disease in MPS VII mice following AAV-mediated neonatal gene transfer Gene Ther 8, 1291–1298.Google Scholar
  9. 9.
    Davidson, B. L., Stein, C. S., Heth, J. A., Martins, I., Kotin, R. M., Derksen, T. A., Zabner, J., Ghodsi, A., and Chiorini, J. A. (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: Transduction of variant cell types and regions in the mammalian central nervous system Proc Natl Acad Sci 97, 3428–3432.Google Scholar
  10. 10.
    Burger, C., Gorbatyuk, O. S., Velardo, M. J., Peden, C. S., Williams, P., Zolotukhin, S., Reier, P. J., Mandel, R. J., and Muzyczka, N. (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system Mol Ther 10, 302–317.PubMedCrossRefGoogle Scholar
  11. 11.
    Gao, G. P., Alvira, M. R., Wang, L., Calcedo, R., Johnston, J., and Wilson, J. M. (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy Proc Natl Acad Sci 99, 11854–11859.Google Scholar
  12. 12.
    Nakai, H., Fuess, S., Storm, T. A., Muramatsu, S., Nara, Y., and Kay, M. A. (2005) Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice J Virol 79, 214–224.PubMedCrossRefGoogle Scholar
  13. 13.
    Inagaki, K., Fuess, S., Storm, T. A., Gibson, G. A., McTiernan, C. F., Kay, M. A., and Nakai, H. (2006) Robust systemic transduction with AAV9 vectors in mice: Efficient global cardiac gene transfer superior to that of AAV8 Mol Ther 14, 45–53.Google Scholar
  14. 14.
    Wang, L., Nichols, T. C., Read, M. S., Bellinger, D. A., and Verma, I. M. (2000) Sustained expression of therapeutic levels of factor IX in hemophilia B dogs by AAV-mediated gene therapy in liver Mol Ther 1, 154–158.Google Scholar
  15. 15.
    Franco, L. M., Sun, B., Yang, X., Bird, A., Zhang, H., Schneider, A., Brown, T., Young, S. P., Clay, T. M., Amalfitano, A., Chen, Y. T., and Koeberl, D. D. (2005) Evasion of immune responses to introduced human acid alpha-glucosidase by liver-restricted expression in glycogen storage disease type II Mol Ther 12, 876–884.Google Scholar
  16. 16.
    Cooper, M., Nayak, S., Hoffman, B. E., Terhorst, C., Cao, O., and Herzog, R. W. (2009) Improved induction of immune ­tolerance to factor IX by hepatic AAV8 gene transfer Hum Gene Ther 20, 767–776.PubMedCrossRefGoogle Scholar
  17. 17.
    Ishiwata, A., Mimuro, J., Mizukami, H., Kashiwakura, Y., Takano, K., Ohmori, T., Madoiwa, S., and Ozawa, Sakata, Y. (2009) Liver-restricted expression of the canine factor VIII gene facilitates prevention of inhibitor formation in factor VIII-deficient mice J Gene Med 11, 1020–1029.Google Scholar
  18. 18.
    Sun, B., Kulis, M. D., Young, S. P., Hobeika, A. C., Li, S., Bird, A., Zhang, H., Li, Y., Clay, T. M., Burks, W., Kishnani, P. S., and Koeberl, D. D. (2010) Immunomodulatory gene therapy prevents antibody formation and lethal hypersensitivity reactions in murine Pompe disease Mol Ther 18, 353–360.Google Scholar
  19. 19.
    Sferra, T. J., Backstrom, K., Wang, C., Rennard, R., Miller, M., and Hu, Y. (2004) Widespread correction of lysosomal storage following intrahepatic injection of a recombinant adeno-associated virus in the adult MPS VII mouse Mol Ther 10, 478–490.Google Scholar
  20. 20.
    Duan, D., Sharma, P., Yang, J., Yue, Y., Dudas, L., Zhang, Y., Fisher, K. J., and Engelhardt, J. F. (1998) Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue J Virol 72, 8568–8577.Google Scholar
  21. 21.
    Nakai, H., Yant, S. R., Storm, T. A., Fuess, S., Meuse, L., and Kay, M. A. (2001) Extrachromosomal recombinant adeno-­associated virus vector genomes are primarily responsible for stable liver transduction in vivo J Virol 75, 6969–6976.Google Scholar
  22. 22.
    Hacein-Bey-Abina, S., Von Kolle, C., Schmidt, M., McCormack, M. P., Wulffrat, N., Leboulch, P., Lim, A., Osborne, C. S., Pawliuk, R., Morillon, E., Sorensen, R., Forster, A., Fraser, P., Cohen, J. I., de Saint Basile, G., Alexander, I., Wintergerst, U., Freborg, T., Aurias, A., Stoppa-Lyonnet, D., Romana, S., Radford-Weiss, I., Gross, F., Valensi, F., Delabesse, E., Macintyre, E., Sigaux, F., Soulier, J., Leiva, L. E., Wissler, M., Prinz, C., Rabbitts, T. H., Le Deist, F., Fischer, A., and Cavazzana-Calvo, M. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1 Science 302, 415–419.Google Scholar
  23. 23.
    Stein, S., Ott, M. G., Schultze-Strasser, S., Jauch, A., Burwinkel, B., Kinner, A., Schmidt, M., Kramer, A., Schwable, J., Glimm, H., Koehl, U., Preiss, C., Ball, C., Martin, H., Gohring, G., Schwarzwaelder, K., Hofmann, W. K., Karakaya, K., Tchatchou, S., Yang, R., Reinecke, P., Kuhlcke, K., Schlegelberger, B., Thrasher, A. J., Hoelzer, D., Seger, R., von Kalle, C., and Grez, M. (2010) Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease Nat Med 16, 198–205.PubMedCrossRefGoogle Scholar
  24. 24.
    Nakai, H., Wu, X., Fuess, S., Storm, T. A., Munroe, D., Montini, E., Burgess, S. M., Grompe, M., and Kay, M. A. (2005) Lareg-scale molecular characterization of adeno-­associated virus vector integration in mouse liver J Virol 79, 3606–3614.Google Scholar
  25. 25.
    Miller, D. G., Trobridge, G. G., Petek, L. M., Jacobs, M. A., Kaul, R., and Russell, D. W. (2005) Large-scale analysis of adeno-associated virus vector integration sites in normal human cells J Virol 79, 11434–11442.Google Scholar
  26. 26.
    Donsante, A., Miller, D. G., Li, Y., Vogler, C., Brundt, E. M., Russell, D. W., and Sands, M. S. AAV vector integration sites in mouse hepatocellular carcinoma Science 317, 477.Google Scholar
  27. 27.
    Donsante, A., Vogler, C., Muzyczka, N., Crawford, J. M., Barker, J., Flotte, T., Campbell-Thompson, M., Daly, T., and Sands, M. S. (2001) Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors Gene Ther 8, 1343–1346.Google Scholar
  28. 28.
    Vogler, C., Galvin, N., Levy, B., Grubb, J., Jiang, J., Zhou, X. Y., and Sly, W. S. (2003) Transgene produces massive overexpression of human β-glucuronidase in mice, lysosomal storage of enzyme, and strain-dependent tumors Proc Natl Acad Sci 100, 2669–2673.Google Scholar
  29. 29.
    Embury, J. E., Charron, C. C., Poirier, A. E., Zori, A., Carmichael, R., Flotte, T. R., and Laipis, P. J. (2006) Long term portal vein administration of AAV-WPRE vector results in increased incidence of neoplastic disease and hepatic pathology Mol Ther 13, S83.Google Scholar
  30. 30.
    Bell, P., Moscioni, D., McCarter, R. J., Wu, D., Gao, G., Hoang, A., Sanmiguel, J. C., Sun, X., Wivel, N. A., Raper, S. E., Furth, E. E., Batshaw, M. L., and Wilson, J. M. (2006) Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver Mol Ther 14, 34–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Cai, S. R., Garbow, J. R., Culverhouse, R., Church, R. D., Zhang, W., Shannon, W. D., and McLeod, H. L. (2005) A mouse model for developing treatment for secondary liver tumors Int J Oncol 27, 113–120.Google Scholar
  32. 32.
    Sands, M. S., and Barker, J. E. (1999) Percutaneous intravenous injection into neonatal mice Lab Animal Sci 49, 328–331.Google Scholar
  33. 33.
    Molecular Cloning: A laboratory manual, 3rd edition, (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Sambrook, J., Russell, D., eds.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Washington University School of MedicineSt. LouisUSA

Personalised recommendations