Advertisement

Design and Construction of Functional AAV Vectors

  • John T. GrayEmail author
  • Serge Zolotukhin
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 807)

Abstract

Using the basic principles of molecular biology and laboratory techniques presented in this chapter, researchers should be able to create a wide variety of AAV vectors for both clinical and basic research applications. Basic vector design concepts are covered for both protein coding gene expression and small non-coding RNA gene expression cassettes. AAV plasmid vector backbones (available via AddGene) are described, along with critical sequence details for a variety of modular expression components that can be inserted as needed for specific applications. Protocols are provided for assembling the various DNA components into AAV vector plasmids in Escherichia coli, as well as for transferring these vector sequences into baculovirus genomes for large-scale production of AAV in the insect cell production system.

Key words

AAV Vector plasmid Vector performance Transfection Molecular cloning Baculovirus Vector design 

References

  1. 1.
    Goyenvalle, A., Vulin, A., Fougerousse, F., Leturcq, F., Kaplan, J. C., Garcia, L., and Danos, O. (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping, Science 306, 1796–1799.PubMedCrossRefGoogle Scholar
  2. 2.
    Bertrand, E., Castanotto, D., Zhou, C., Carbonnelle, C., Lee, N. S., Good, P., Chatterjee, S., Grange, T., Pictet, R., Kohn, D., Engelke, D., and Rossi, J. J. (1997) The expression cassette determines the functional activity of ribozymes in mammalian cells by controlling their intracellular localization, RNA 3, 75–88.PubMedGoogle Scholar
  3. 3.
    Goverdhana, S., Puntel, M., Xiong, W., Zirger, J. M., Barcia, C., Curtin, J. F., Soffer, E. B., Mondkar, S., King, G. D., Hu, J., Sciascia, S. A., Candolfi, M., Greengold, D. S., Lowenstein, P. R., and Castro, M. G. (2005) Regulatable gene expression systems for gene therapy applications: Progress and future challenges, Mol. Ther. 12, 189–211.PubMedCrossRefGoogle Scholar
  4. 4.
    Akimitsu, N. (2008) Messenger RNA Surveillance Systems Monitoring Proper Translation Termination, J. Biochem. (Tokyo) 143, 1–8.CrossRefGoogle Scholar
  5. 5.
    Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44, 283–292.PubMedCrossRefGoogle Scholar
  6. 6.
    Hershberg, R., and Petrov, D. A. (2008) Selection on Codon Bias, Annu. Rev. Genet. 42, 287–299.PubMedCrossRefGoogle Scholar
  7. 7.
    Sorensen, M. A., Kurland, C. G., and Pedersen, S. (1989) Codon usage determines translation rate in Escherichia-coli, J. Mol. Biol. 207, 365–377.PubMedCrossRefGoogle Scholar
  8. 8.
    Thanaraj, T. A., and Argos, P. (1996) Ribosome-mediated translational pause and protein domain organization, Protein Sci. 5, 1594–1612.PubMedCrossRefGoogle Scholar
  9. 9.
    Purvis, I. J., Bettany, A. J. E., Santiago, T. C., Coggins, J. R., Duncan, K., Eason, R., and Brown, A. J. P. (1987) The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis, J. Mol. Biol. 193, 413–417.PubMedCrossRefGoogle Scholar
  10. 10.
    Miao, C. H., Ohashi, K., Patijn, G. A., Meuse, L., Ye, X., Thompson, A. R., and Kay, M. A. (2000) Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro, Mol.Ther. 1, 522–532.PubMedCrossRefGoogle Scholar
  11. 11.
    Qiao, C., Wang, B., Zhu, X., Li, J., and Xiao, X. (2002) A novel gene expression control system and its use in stable, high-titer 293 cell-based adeno-associated virus packaging cell lines, J. Virol. 76, 13015–13027.PubMedCrossRefGoogle Scholar
  12. 12.
    Chao, H. J., Sun, L. W., Bruce, A., Xiao, X., and Walsh, C. E. (2002) Expression of human factor VIII by splicing between dimerized AAV vectors, Mol. Ther. 5, 716–722.PubMedCrossRefGoogle Scholar
  13. 13.
    Szymczak, A. L., Workman, C. J., Wang, Y., Vignali, K. M., Dilioglou, S., Vanin, E. F., and Vignali, D. A. (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector, Nat. Biotechnol. 22, 589–594.PubMedCrossRefGoogle Scholar
  14. 14.
    Bartel, D. P. (2009) MicroRNAs: Target Recognition and Regulatory Functions, Cell 136, 215–233.PubMedCrossRefGoogle Scholar
  15. 15.
    Murray, E. L., and Schoenberg, D. R. (2007) A plus U-rich instability elements differentially activate 5′–3′ and 3′–5′ mRNA decay, Mol. Cell. Biol. 27, 2791–2799.PubMedCrossRefGoogle Scholar
  16. 16.
    Brown, B. D., Venneri, M. A., Zingale, A., Sergi, L. S., and Naldini, L. (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer, Nat. Med. 12, 585–591.PubMedCrossRefGoogle Scholar
  17. 17.
    Brummelkamp, T. R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells, Science 296, 550–553.PubMedCrossRefGoogle Scholar
  18. 18.
    Silva, J. M., Li, M. Z., Chang, K., Ge, W., Golding, M. C., Rickles, R. J., Siolas, D., Hu, G., Paddison, P. J., Schlabach, M. R., Sheth, N., Bradshaw, J., Burchard, J., Kulkarni, A., Cavet, G., Sachidanandam, R., McCombie, W. R., Cleary, M. A., Elledge, S. J., and Hannon, G. J. (2005) Second-generation shRNA libraries covering the mouse and human genomes, Nat.Genet. 37, 1281–1288.PubMedGoogle Scholar
  19. 19.
    Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J., and Elledge, S. J. (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 102, 13212–13217.PubMedCrossRefGoogle Scholar
  20. 20.
    Boudreau, R. L., Monteys, A. M., and Davidson, B. L. (2008) Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs, Rna-a Publication of the Rna Society 14, 1834–1844.CrossRefGoogle Scholar
  21. 21.
    Boudreau, R. L., Martins, I., and Davidson, B. L. (2009) Artificial MicroRNAs as siRNA Shuttles: Improved Safety as Compared to shRNAs In vitro and In vivo, Mol. Ther. 17, 169–175.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu, Y. P., Haasnoot, J., ter Brake, O., Berkhout, B., and Konstantinova, P. (2008) Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron, Nucleic Acids Res. 36, 2811–2824.PubMedCrossRefGoogle Scholar
  23. 23.
    Xiao, X., Li, J., and Samulski, R. J. (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus, The Journal of Virology 72, 2224–2232.Google Scholar
  24. 24.
    Aslanidi, G., Lamb, K., and Zolotukhin, S. (2009) An inducible system for highly efficient production of recombinant adeno-associated virus (rAAV) vectors in insect Sf9 cells, Proc. Natl. Acad. Sci. U.S.A. 106, 5059–5064.PubMedCrossRefGoogle Scholar
  25. 25.
    Chen, H. (2008) Intron splicing-mediated expression of AAV Rep and Cap genes and production of AAV vectors in insect cells, Mol. Ther. 16, 924–930.PubMedCrossRefGoogle Scholar
  26. 26.
    Smith, R. H., Levy, J. R., and Kotin, R. M. (2009) A Simplified Baculovirus-AAV Expres­sion Vector System Coupled With One-step Affinity Purification Yields High-titer rAAV Stocks From Insect Cells, Mol. Ther. 17, 1888–96.Google Scholar
  27. 27.
    Urabe, M., Ding, C., and Kotin, R. M. (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors, Hum. Gene Ther. 13, 1935–1943.PubMedCrossRefGoogle Scholar
  28. 28.
    Chomczynski, P., and Rymaszewski, M. (2006) Alkaline polyethylene glycol-based method for direct PCR from bacteria, eukaryotic tissue samples, and whole blood, Biotechniques 40, 454, 456, 458.Google Scholar
  29. 29.
    Shetty, R. P., Endy, D., and Knight, T. F., Jr. (2008) Engineering BioBrick vectors from BioBrick parts, J. Biol. Eng. 2, 5.PubMedCrossRefGoogle Scholar
  30. 30.
    Arad, U. (1998) Modified Hirt procedure for rapid purification of extrachromosomal DNA from mammalian cells, Biotechniques 24, 760–762.PubMedGoogle Scholar
  31. 31.
    Cecchini, S., Negrete, A., and Kotin, R. M. (2008) Toward exascale production of recombinant adeno-associated virus for gene transfer applications, Gene Ther. 15, 823–830.PubMedCrossRefGoogle Scholar
  32. 32.
    Negrete, A., and Kotin, R. M. (2007) Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales, J. Virol. Methods 145, 155–161.PubMedCrossRefGoogle Scholar
  33. 33.
    Negrete, A., and Kotin, R. M. (2008) Large-scale production of recombinant adeno-associated viral vectors, Methods Mol. Biol. 433, 79–96.Google Scholar
  34. 34.
    Negrete, A., and Kotin, R. M. (2008) Strategies for manufacturing recombinant adeno-associated virus vectors for gene therapy applications exploiting baculovirus technology, Brief. Funct. Genomic. Proteomic. 7, 303–311.PubMedCrossRefGoogle Scholar
  35. 35.
    Negrete, A., Yang, L. C., Mendez, A. F., Levy, J. R., and Kotin, R. M. (2007) Economized large-scale production of high yield of rAAV for gene therapy applications exploiting baculovirus expression system, J. Gene Med. 9, 938–948.PubMedCrossRefGoogle Scholar
  36. 36.
    Aucoin, M. G., Perrier, M., and Kamen, A. A. (2008) Critical assessment of current adeno-associated viral vector production and quantification methods, Biotechnol Adv 26, 73–88.PubMedCrossRefGoogle Scholar
  37. 37.
    Cao, L., Liu, Y. H., During, M. J., and Xiao, W. D. (2000) High-titer, wild-type free recombinant adeno-associated virus vector production using intron-containing helper plasmids, J. Virol. 74, 11456–11463.PubMedCrossRefGoogle Scholar
  38. 38.
    Nathwani, A. C., Gray, J. T., Ng, C. Y., Zhou, J., Spence, Y., Waddington, S. N., Tuddenham, E. G., Kemball-Cook, G., McIntosh, J., Boon-Spijker, M., Mertens, K., and Davidoff, A. M. (2006) Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver, Blood. 107, 2653–2661.PubMedCrossRefGoogle Scholar
  39. 39.
    Hoesche, C., Sauerwald, A., Veh, R. W., Krippl, B., and Kilimann, M. W. (1993) The 5′-flanking region of the rat synapsin-I gene directs neuron-specific and developmentally-regulated reporter gene-expression in transgenic mice, J. Biol. Chem. 268, 26494–26502.PubMedGoogle Scholar
  40. 40.
    Thiel, G., Greengard, P., and Sudhof, T. C. (1991) Characterization of tissue-specific transcription by the human synapsin-I gene promoter, Proc. Natl. Acad. Sci. U.S.A. 88, 3431–3435.PubMedCrossRefGoogle Scholar
  41. 41.
    Shield, M. A., Haugen, H. S., Clegg, C. H., and Hauschka, S. D. (1996) E-box sites and a proximal regulatory region of the muscle creatine kinase gene differentially regulate expression in diverse skeletal muscles and cardiac muscle of transgenic mice, Mol. Cell. Biol. 16, 5058–5068.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of HematologySt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Division of Cellular and Molecular TherapyUniversity of FloridaGainesvilleUSA

Personalised recommendations