Advertisement

Production and Purification of Recombinant Adeno-Associated Vectors

  • Lijun Wang
  • Véronique Blouin
  • Nicole Brument
  • Mahajoub Bello-Roufai
  • Achille FrancoisEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 807)

Abstract

The use of recombinant adeno-associated virus (rAAV) vectors in gene therapy for preclinical studies in animal models and human clinical trials is increasing, as these vectors have been shown to be safe and to mediate persistent transgene expression in vivo. Constant improvement in rAAV manufacturing processes (upstream production and downstream purification) has paralleled this evolution to meet the needs for larger vector batches, higher vector titer, and improved vector quality and safety. This chapter provides an overview of existing production and purification systems used for adeno-associated virus (AAV) vectors, and the advantages and disadvantages of each system are outlined. Regulatory guidelines that apply to the use of these systems for clinical trials are also presented. The methods described are examples of protocols that have been utilized for establishing rAAV packaging cell lines, production of rAAV vectors using recombinant HSV infection, and for chromatographic purification of various AAV vector serotypes. A protocol for the production of clinical-grade rAAV type 2 vectors using transient transfection and centrifugation-based purification is also described.

Key words

Adeno-associated virus rAAV Vector Production Purification Gene therapy Clinical trial cGMP 

References

  1. 1.
    McLaughlin, S. K., Collis, P., Hermonat, P. L., and Muzyczka, N. (1988) Adeno-associated virus general transduction vectors: analysis of proviral structures, J Virol 62, 1963–1973.PubMedGoogle Scholar
  2. 2.
    Salvetti, A., Oreve, S., Chadeuf, G., Favre, D., Cherel, Y., Champion-Arnaud, P., David-Ameline, J., and Moullier, P. (1998) Factors influencing recombinant adeno-associated virus production, Hum Gene Ther 9, 695–706.PubMedCrossRefGoogle Scholar
  3. 3.
    Merten, O. W., Geny-Fiamma, C., and Douar, A. M. (2005) Current issues in adeno-associated viral vector production, Gene Ther 12Suppl 1, S51-61.PubMedCrossRefGoogle Scholar
  4. 4.
    Aucoin, M. G., Perrier, M., and Kamen, A. A. (2008) Critical assessment of current adeno-associated viral vector production and quantification methods, Biotechnol Adv 26, 73–88.PubMedCrossRefGoogle Scholar
  5. 5.
    Urabe, M., Ding, C., and Kotin, R. M. (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors, Hum Gene Ther 13, 1935–1943.PubMedCrossRefGoogle Scholar
  6. 6.
    Smith, R. H., Levy, J. R., and Kotin, R. M. (2009) A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells, Mol Ther 17, 1888–1896.PubMedCrossRefGoogle Scholar
  7. 7.
    Aslanidi, G., Lamb, K., and Zolotukhin, S. (2009) An inducible system for highly efficient production of recombinant adeno-associated virus (rAAV) vectors in insect Sf9 cells, Proc Natl Acad Sci U S A 106, 5059–5064.PubMedCrossRefGoogle Scholar
  8. 8.
    Xiao, X., Li, J., and Samulski, R. J. (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus, J Virol 72, 2224–2232.PubMedGoogle Scholar
  9. 9.
    Rabinowitz, J. E., Rolling, F., Li, C., Conrath, H., Xiao, W., Xiao, X., and Samulski, R. J. (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity, J Virol 76, 791–801.PubMedCrossRefGoogle Scholar
  10. 10.
    Grimm, D., Kern, A., Rittner, K., and Kleinschmidt, J. A. (1998) Novel tools for production and purification of recombinant adenoassociated virus vectors, Hum Gene Ther 9, 2745–2760.PubMedCrossRefGoogle Scholar
  11. 11.
    Collaco, R. F., Cao, X., and Trempe, J. P. (1999) A helper virus-free packaging system for recombinant adeno-associated virus vectors, Gene 238, 397–405.PubMedCrossRefGoogle Scholar
  12. 12.
    Grimm, D., Kay, M. A., and Kleinschmidt, J. A. (2003) Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6, Mol Ther 7, 839–850.PubMedCrossRefGoogle Scholar
  13. 13.
    Gao, G. P., Qu, G., Faust, L. Z., Engdahl, R. K., Xiao, W., Hughes, J. V., Zoltick, P. W., and Wilson, J. M. (1998) High-titer adeno-associated viral vectors from a Rep/Cap cell line and hybrid shuttle virus, Hum Gene Ther 9, 2353–2362.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu, X. L., Clark, K. R., and Johnson, P. R. (1999) Production of recombinant adeno-associated virus vectors using a packaging cell line and a hybrid recombinant adenovirus, Gene Ther 6, 293–299.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang, H., Xie, J., Xie, Q., Wilson, J. M., and Gao, G. (2009) Adenovirus-adeno-associated virus hybrid for large-scale recombinant adeno-associated virus production, Hum Gene Ther 20, 922–929.PubMedCrossRefGoogle Scholar
  16. 16.
    Clark, K. R., Voulgaropoulou, F., Fraley, D. M., and Johnson, P. R. (1995) Cell lines for the production of recombinant adeno-associated virus, Hum Gene Ther 6, 1329–1341.PubMedCrossRefGoogle Scholar
  17. 17.
    Blouin, V., Brument, N., Toublanc, E., Raimbaud, I., Moullier, P., and Salvetti, A. (2004) Improving rAAV production and purification: towards the definition of a scaleable process, J Gene Med 6 Suppl 1, S223-228.PubMedCrossRefGoogle Scholar
  18. 18.
    Thorne, B. A., Takeya, R. K., and Peluso, R. W. (2009) Manufacturing recombinant adeno-associated viral vectors from producer cell clones, Hum Gene Ther 20, 707–714.PubMedCrossRefGoogle Scholar
  19. 19.
    Toublanc, E., Benraiss, A., Bonnin, D., Blouin, V., Brument, N., Cartier, N., Epstein, A. L., Moullier, P., and Salvetti, A. (2004) Identification of a replication-defective herpes simplex virus for recombinant adeno-associated virus type 2 (rAAV2) particle assembly using stable producer cell lines, J Gene Med 6, 555–564.PubMedCrossRefGoogle Scholar
  20. 20.
    Gao, G. P., Lu, F., Sanmiguel, J. C., Tran, P. T., Abbas, Z., Lynd, K. S., Marsh, J., Spinner, N. B., and Wilson, J. M. (2002) Rep/Cap gene amplification and high-yield production of AAV in an A549 cell line expressing Rep/Cap, Mol Ther 5, 644–649.PubMedCrossRefGoogle Scholar
  21. 21.
    Farson, D., Harding, T. C., Tao, L., Liu, J., Powell, S., Vimal, V., Yendluri, S., Koprivnikar, K., Ho, K., Twitty, C., Husak, P., Lin, A., Snyder, R. O., and Donahue, B. A. (2004) Development and characterization of a cell line for large-scale, serum-free production of recombinant adeno-associated viral vectors, J Gene Med 6, 1369–1381.PubMedCrossRefGoogle Scholar
  22. 22.
    Conway, J. E., Rhys, C. M., Zolotukhin, I., Zolotukhin, S., Muzyczka, N., Hayward, G. S., and Byrne, B. J. (1999) High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap, Gene Ther 6, 986–993.PubMedCrossRefGoogle Scholar
  23. 23.
    Kang, W., Wang, L., Harrell, H., Liu, J., Thomas, D. L., Mayfield, T. L., Scotti, M. M., Ye, G. J., Veres, G., and Knop, D. R. (2009) An efficient rHSV-based complementation system for the production of multiple rAAV vector serotypes, Gene Ther 16, 229–239.PubMedCrossRefGoogle Scholar
  24. 24.
    Booth, M. J., Mistry, A., Li, X., Thrasher, A., and Coffin, R. S. (2004) Transfection-free and scalable recombinant AAV vector production using HSV/AAV hybrids, Gene Ther 11, 829–837.PubMedCrossRefGoogle Scholar
  25. 25.
    Negrete, A., and Kotin, R. M. (2008) Large-scale production of recombinant adeno-associated viral vectors, Methods Mol Biol 433, 79–96.PubMedCrossRefGoogle Scholar
  26. 26.
    Negrete, A., and Kotin, R. M. (2007) Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales, J Virol Methods 145, 155–161.PubMedCrossRefGoogle Scholar
  27. 27.
    Cecchini, S., Virag, T., Negrete, A., and Kotin, R. M. (2009) Production and Processing of rAAVU7smOPT in 100L Bioreactors for Canine Models of Duchenne Muscular Dystrophy, Mol Ther 17, 17.Google Scholar
  28. 28.
    Durocher, Y., Pham, P. L., St-Laurent, G., Jacob, D., Cass, B., Chahal, P., Lau, C. J., Nalbantoglu, J., and Kamen, A. (2007) Scalable serum-free production of recombinant adeno-associated virus type 2 by transfection of 293 suspension cells, J Virol Methods 144, 32–40.PubMedCrossRefGoogle Scholar
  29. 29.
    Hauck, B., Qu, G., Zelenaia, O., Zhou, J., Liu, X., Africa, L., High, K. A., and Wright, J. F. (2009) A Scalable Manufacturing Platform for Purification of AAV Serotypes 2, 5, 6 and 8 for IND-Supporting Pre-Clinical Studies and Clinical Trials, Mol Ther 17, S17.CrossRefGoogle Scholar
  30. 30.
    Thomas, D. L., Wang, L., Niamke, J., Liu, J., Kang, W., Scotti, M. M., Ye, G. J., Veres, G., and Knop, D. R. (2009) Scalable recombinant adeno-associated virus production using recombinant herpes simplex virus type 1 coinfection of suspension-adapted mammalian cells, Hum Gene Ther 20, 861–870.PubMedCrossRefGoogle Scholar
  31. 31.
    Zeltner, N., Kohlbrenner, E., Clément, N., Weber, T., and Linden, R. M. (2010) Near-perfect infectivity of wild-type AAV as benchmark for infectivity of recombinant AAV vectors., Gene Ther 17.Google Scholar
  32. 32.
    Ayuso, E., Mingozzi, F., Montane, J., Leon, X., Anguela, X. M., Haurigot, V., Edmonson, S. A., Africa, L., Zhou, S., High, K. A., Bosch, F., and Wright, J. F. (2009) High AAV vector purity results in serotype- and tissue-independent enhancement of transduction efficiency, Gene Ther.Google Scholar
  33. 33.
    Wright, J. F. (2009) Transient transfection methods for clinical adeno-associated viral vector production, Hum Gene Ther 20, 698–706.PubMedCrossRefGoogle Scholar
  34. 34.
    Knop, D. R., and Harrell, H. (2007) Bioreactor production of recombinant herpes simplex virus vectors, Biotechnol Prog 23, 715–721.PubMedCrossRefGoogle Scholar
  35. 35.
    Virag, T., Cecchini, S., and Kotin, R. M. (2009) Producing recombinant adeno-associated virus in foster cells: overcoming production limitations using a baculovirus-insect cell expression strategy, Hum Gene Ther 20, 807–817.PubMedCrossRefGoogle Scholar
  36. 36.
    Pijlman, G. P., van Schijndel, J. E., and Vlak, J. M. (2003) Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells, J Gen Virol 84, 2669–2678.PubMedCrossRefGoogle Scholar
  37. 37.
    Edelstein, M. L., Abedi, M. R., and Wixon, J. (2007) Gene therapy clinical trials worldwide to 2007--an update, J Gene Med 9, 833–842.PubMedCrossRefGoogle Scholar
  38. 38.
    Gao, G., Qu, G., Burnham, M. S., Huang, J., Chirmule, N., Joshi, B., Yu, Q. C., Marsh, J. A., Conceicao, C. M., and Wilson, J. M. (2000) Purification of recombinant adeno-associated virus vectors by column chromatography and its performance in vivo, Hum Gene Ther 11, 2079–2091.PubMedCrossRefGoogle Scholar
  39. 39.
    O’Riordan, C. R., Lachapelle, A. L., Vincent, K. A., and Wadsworth, S. C. (2000) Scaleable chromatographic purification process for recombinant adeno-associated virus (rAAV), J Gene Med 2, 444–454.PubMedCrossRefGoogle Scholar
  40. 40.
    Brument, N., Morenweiser, R., Blouin, V., Toublanc, E., Raimbaud, I., Cherel, Y., Folliot, S., Gaden, F., Boulanger, P., Kroner-Lux, G., Moullier, P., Rolling, F., and Salvetti, A. (2002) A versatile and scalable two-step ion-exchange chromatography process for the purification of recombinant adeno-associated virus serotypes-2 and −5, Mol Ther 6, 678–686.PubMedCrossRefGoogle Scholar
  41. 41.
    Kaludov, N., Handelman, B., and Chiorini, J. A. (2002) Scalable purification of adeno-associated virus type 2, 4, or 5 using ion-exchange chromatography, Hum Gene Ther 13, 1235–1243.PubMedCrossRefGoogle Scholar
  42. 42.
    Davidoff, A. M., Ng, C. Y., Sleep, S., Gray, J., Azam, S., Zhao, Y., McIntosh, J. H., Karimipoor, M., and Nathwani, A. C. (2004) Purification of recombinant adeno-associated virus type 8 vectors by ion exchange chromatography generates clinical grade vector stock, J Virol Methods 121, 209–215.PubMedCrossRefGoogle Scholar
  43. 43.
    Smith, R. H., Ding, C., and Kotin, R. M. (2003) Serum-free production and column purification of adeno-associated virus type 5, J Virol Methods 114, 115–124.PubMedCrossRefGoogle Scholar
  44. 44.
    Chahal, P. S., Aucoin, M. G., and Kamen, A. (2007) Primary recovery and chromatographic purification of adeno-associated virus type 2 produced by baculovirus/insect cell system, J Virol Methods 139, 61–70.PubMedCrossRefGoogle Scholar
  45. 45.
    Qu, G., Bahr-Davidson, J., Prado, J., Tai, A., Cataniag, F., McDonnell, J., Zhou, J., Hauck, B., Luna, J., Sommer, J. M., Smith, P., Zhou, S., Colosi, P., High, K. A., Pierce, G. F., and Wright, J. F. (2007) Separation of adeno-associated virus type 2 empty particles from genome containing vectors by anion-exchange column chromatography, J Virol Methods 140, 183–192.PubMedCrossRefGoogle Scholar
  46. 46.
    Urabe, M., Xin, K. Q., Obara, Y., Nakakura, T., Mizukami, H., Kume, A., Okuda, K., and Ozawa, K. (2006) Removal of empty capsids from type 1 adeno-associated virus vector stocks by anion-exchange chromatography potentiates transgene expression, Mol Ther 13, 823–828.PubMedCrossRefGoogle Scholar
  47. 47.
    Tamayose, K., Hirai, Y., and Shimada, T. (1996) A new strategy for large-scale preparation of high-titer recombinant adeno-associated virus vectors by using packaging cell lines and sulfonated cellulose column chromatography, Hum Gene Ther 7, 507–513.PubMedCrossRefGoogle Scholar
  48. 48.
    Francis, J. D. a. S., R.O. (2005) Production of Research and Clinical Grade Recombinant Adeno-associated Viral Vectors., Vol. 31, Elsevier, Amsterdam.Google Scholar
  49. 49.
    Okada, T., Nonaka-Sarukawa, M., Uchibori, R., Kinoshita, K., Hayashita-Kinoh, H., Nitahara-Kasahara, Y., Takeda, S., and Ozawa, K. (2009) Scalable purification of adeno-associated virus serotype 1 (AAV1) and AAV8 vectors, using dual ion-exchange adsorptive membranes, Hum Gene Ther 20, 1013–1021.PubMedCrossRefGoogle Scholar
  50. 50.
    Auricchio, A., Hildinger, M., O’Connor, E., Gao, G. P., and Wilson, J. M. (2001) Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column, Hum Gene Ther 12, 71–76.PubMedCrossRefGoogle Scholar
  51. 51.
    Snyder, R. O., and Flotte, T. R. (2002) Production of clinical-grade recombinant adeno-associated virus vectors, Curr Opin Biotechnol 13, 418–423.PubMedCrossRefGoogle Scholar
  52. 52.
    Clark, K. R., Liu, X., McGrath, J. P., and Johnson, P. R. (1999) Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses, Hum Gene Ther 10, 1031–1039.PubMedCrossRefGoogle Scholar
  53. 53.
    Anderson, R., Macdonald, I., Corbett, T., Whiteway, A., and Prentice, H. G. (2000) A method for the preparation of highly purified adeno-associated virus using affinity column chromatography, protease digestion and solvent extraction, J Virol Methods 85, 23–34.PubMedCrossRefGoogle Scholar
  54. 54.
    Auricchio, A., O’Connor, E., Hildinger, M., and Wilson, J. M. (2001) A single-step affinity column for purification of serotype-5 based adeno-associated viral vectors, Mol Ther 4, 372–374.PubMedCrossRefGoogle Scholar
  55. 55.
    Cecchini, S., Negrete, A., and Kotin, R. M. (2008) Toward exascale production of recombinant adeno-associated virus for gene transfer applications, Gene Ther 15, 823–830.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang, L., and Knop, D. R. (2007) Affinity Chromatography Purification of rAAV Vectors Produced by Transfection or rHSV Co-infection Using CaptureSelect AAV ligand, Mol Ther 15.Google Scholar
  57. 57.
    Wang, L., Niamke, J., Veres, G., and Knop, D. (2008) Two-Step Scalable Purification Process of rAAV1 Vectors Produced by rHSV Co-Infection in Suspension BHK Cells, Mol Ther 16, 291.Google Scholar
  58. 58.
    Wang, L., Veres, G., and Knop, D. R. (2009) Two-step Chromatography Purification of rAAV1 Vectors produced by Suspension BHK Cells rHSV Co-infection, Mol Ther 17, 715.Google Scholar
  59. 59.
    Arnold, G. S., Sasser, A. K., Stachler, M. D., and Bartlett, J. S. (2006) Metabolic biotinylation provides a unique platform for the purification and targeting of multiple AAV vector serotypes, Mol Ther 14, 97–106.PubMedCrossRefGoogle Scholar
  60. 60.
    Stachler, M. D., and Bartlett, J. S. (2006) Mosaic vectors comprised of modified AAV1 capsid proteins for efficient vector purification and targeting to vascular endothelial cells, Gene Ther 13, 926–931.PubMedGoogle Scholar
  61. 61.
    Koerber, J. T., Jang, J. H., Yu, J. H., Kane, R. S., and Schaffer, D. V. (2007) Engineering adeno-associated virus for one-step purification via immobilized metal affinity chromatography, Hum Gene Ther 18, 367–378.PubMedCrossRefGoogle Scholar
  62. 62.
    Smith, R. H., Yang, L., and Kotin, R. M. (2008) Chromatography-based purification of adeno-associated virus, Methods Mol Biol 434, 37–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Zolotukhin, S., Byrne, B. J., Mason, E., Zolotukhin, I., Potter, M., Chesnut, K., Summerford, C., Samulski, R. J., and Muzyczka, N. (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield, Gene Ther 6, 973–985.PubMedCrossRefGoogle Scholar
  64. 64.
    Summerford, C., and Samulski, R. J. (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions, J Virol 72, 1438–1445.PubMedGoogle Scholar
  65. 65.
    Mizukami, H., Young, N. S., and Brown, K. E. (1996) Adeno-associated virus type 2 binds to a 150-kilodalton cell membrane glycoprotein, Virology 217, 124–130.PubMedCrossRefGoogle Scholar
  66. 66.
    Qiu, J., Handa, A., Kirby, M., and Brown, K. E. (2000) The interaction of heparin sulfate and adeno-associated virus 2, Virology 269, 137–147.PubMedCrossRefGoogle Scholar
  67. 67.
    Kaludov, N., Brown, K. E., Walters, R. W., Zabner, J., and Chiorini, J. A. (2001) Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity, J Virol 75, 6884–6893.PubMedCrossRefGoogle Scholar
  68. 68.
    Snyder, R. O., and Francis, J. (2005) Adeno-associated viral vectors for clinical gene transfer studies, Curr Gene Ther 5, 311–321.PubMedCrossRefGoogle Scholar
  69. 69.
    Mandel, R. J., Burger, C., and Snyder, R. O. (2008) Viral vectors for in vivo gene transfer in Parkinson’s disease: properties and clinical grade production, Exp Neurol 209, 58–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Chadeuf, G., Favre, D., Tessier, J., Provost, N., Nony, P., Kleinschmidt, J., Moullier, P., and Salvetti, A. (2000) Efficient recombinant adeno-associated virus production by a stable rep-cap HeLa cell line correlates with adenovirus-induced amplification of the integrated rep-cap genome, J Gene Med 2, 260–268.PubMedCrossRefGoogle Scholar
  71. 71.
    Mathews, L. C., Gray, J.T., Gallagher, M.R., and Snyder, R.O. (2002) Recombinant Adeno-associated Viral Vector Production Using Stable Packaging and Producer Cell Lines., in Methods in Enzymology, pp 393–413.Google Scholar
  72. 72.
    Nony, P., Chadeuf, G., Tessier, J., Moullier, P., and Salvetti, A. (2003) Evidence for packaging of rep-cap sequences into adeno-associated virus (AAV) type 2 capsids in the absence of inverted terminal repeats: a model for generation of rep-positive AAV particles, J Virol 77, 776–781.PubMedCrossRefGoogle Scholar
  73. 73.
    Francois, A., Guilbaud, M., Awedikian, R., Chadeuf, G., Moullier, P., and Salvetti, A. (2005) The cellular TATA binding protein is required for rep-dependent replication of a minimal adeno-associated virus type 2 p5 element, J Virol 79, 11082–11094.PubMedCrossRefGoogle Scholar
  74. 74.
    Rice, S. A., and Knipe, D. M. (1990) Genetic evidence for two distinct transactivation functions of the herpes simplex virus alpha protein ICP27, J Virol 64, 1704–1715.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Lijun Wang
    • 1
  • Véronique Blouin
    • 2
  • Nicole Brument
    • 3
  • Mahajoub Bello-Roufai
    • 1
  • Achille Francois
    • 2
    Email author
  1. 1.Center of Excellence for Regenerative Health BiotechnologyUniversity of FloridaAlachuaUSA
  2. 2.Laboratoire de Thérapie Génique, INSERMUniversité de NantesNantesFrance
  3. 3.INSERM UMR649, Institut de Recherche Thérapeutique - IRT1Université de NantesNantes, Cedex 01France

Personalised recommendations