Biodistribution and Shedding of AAV Vectors

  • Caroline Le Guiner
  • Phillipe MoullierEmail author
  • Valder R. Arruda
Part of the Methods in Molecular Biology book series (MIMB, volume 807)


Determining the AAV vector biodistribution and shedding is central for the safety assessment of proposed early-phase clinical trials. It is especially crucial in the case of AAV vectors since they are injected directly in situ with no possibility of an intermediate ex vivo step, such as in retroviral-mediated approaches. This sole administration mode, the high capsid diversity (natural and chimeric), the various routes of delivery (e.g., intramuscular, intravenous, intra-arterial, and intracranial) make biodistribution and shedding studies a major investigational field for several years ahead. Indeed, the ideal scenario whereby they become generic is less likely to occur as long as the engineered capsid, the therapeutic strategies (expression of cDNA versus oligonucleotides for exon skipping), and the mode of delivery continue to evolve quickly to clinical translational strategies.

An important aspect of biodistribution and shedding studies is that they practically should not be performed on a “research” mode but rather within the frame of the regulatory animal pharmacology and toxicology studies in order to directly implement the Investigational New Drug (IND) application. Yet, if biodistribution and shedding in animal models are explored at an early research stage, i.e., to investigate whether a given AAV serotype administered in a given way transduces certain immunocompetent cells (how does the vector distribute itself in the immune system and with what kinetic?), it is advisable to use an AAV vector manufactured and quality controlled similarly to what will be done ultimately at the clinical stage.

This chapter provides protocols and recommendations to study how an AAV vector distributes and sheds after administration. We discuss (1) the requirements for a rigorous methodology; (2) avoiding nucleic acid cross contamination; (3) systematically assessing the assay sensitivity, specificity, and reproducibility because milieus can be drastically different, i.e., feces versus urine; and (4) choosing the appropriate animal model(s) when anticipating the regulatory pharmacological/toxicological studies.

Key words

AAV vector Biodistribution Shedding Germ line transmission DNA extraction PCR analysis Infectious particles detection 


  1. 1.
    EMEA. (2009) General principles to address virus and vector shedding, in ICH Considerations, EMEA/CHMP/ICH/449035/442009.Google Scholar
  2. 2.
    EMEA. (1997) Preclinical safety evaluation of biotechnologicy-derived pharmaceuticals S6, in ICH harmonised tripartite guideline.Google Scholar
  3. 3.
    EMEA. (2009) Addenedum to ICH S6: Preclinical safety evaluation of biotechnologicy-derived pharmaceuticals S6(R1), in ICH draft consensus guideline.Google Scholar
  4. 4.
    Schenk-Braat, E. A., van Mierlo, M. M., Wagemaker, G., Bangma, C. H., and Kaptein, L. C. (2007) An inventory of shedding data from clinical gene therapy trials, J Gene Med 9, 910–921.PubMedCrossRefGoogle Scholar
  5. 5.
    Stieger, K., Schroeder, J., Provost, N., Mendes-Madeira, A., Belbellaa, B., Le Meur, G., Weber, M., Deschamps, J. Y., Lorenz, B., Moullier, P., and Rolling, F. (2009) Detection of intact rAAV particles up to 6 years after successful gene transfer in the retina of dogs and primates, Mol Ther 17, 516–523.PubMedCrossRefGoogle Scholar
  6. 6.
    Manno, C. S., Pierce, G. F., Arruda, V. R., Glader, B., Ragni, M., Rasko, J. J., Ozelo, M. C., Hoots, K., Blatt, P., Konkle, B., Dake, M., Kaye, R., Razavi, M., Zajko, A., Zehnder, J., Rustagi, P. K., Nakai, H., Chew, A., Leonard, D., Wright, J. F., Lessard, R. R., Sommer, J. M., Tigges, M., Sabatino, D., Luk, A., Jiang, H., Mingozzi, F., Couto, L., Ertl, H. C., High, K. A., and Kay, M. A. (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response, Nat Med 12, 342–347.PubMedCrossRefGoogle Scholar
  7. 7.
    Toromanoff, A., Cherel, Y., Guilbaud, M., Penaud-Budloo, M., Snyder, R. O., Haskins, M. E., Deschamps, J. Y., Guigand, L., Podevin, G., Arruda, V. R., High, K. A., Stedman, H. H., Rolling, F., Anegon, I., Moullier, P., and Le Guiner, C. (2008) Safety and efficacy of regional intravenous (r.i.) versus intramuscular (i.m.) delivery of rAAV1 and rAAV8 to nonhuman primate skeletal muscle, Mol Ther 16, 1291–1299.PubMedCrossRefGoogle Scholar
  8. 8.
    Ciron, C., Cressant, A., Roux, F., Raoul, S., Cherel, Y., Hantraye, P., Deglon, N., Schwartz, B., Barkats, M., Heard, J. M., Tardieu, M., Moullier, P., and Colle, M. A. (2009) AAV1-, AAV2- and AAV5-Mediated human alpha-Iduronidase Gene Transfer In The Brain of Nonhuman Primate: Vector Diffusion and Bio Distribution, Hum Gene Ther 20, 350–360.Google Scholar
  9. 9.
    Favre, D., Provost, N., Blouin, V., Blancho, G., Cherel, Y., Salvetti, A., and Moullier, P. (2001) Immediate and long-term safety of recombinant adeno-associated virus injection into the nonhuman primate muscle, Mol Ther 4, 559–566.PubMedCrossRefGoogle Scholar
  10. 10.
    Nathwani, A. C., Rosales, C., McIntosh, J., Rastegarlari, G., Nathwani, D., Raj, D., Nawathe, S., Waddington, S. N., Bronson, R., Jackson, S., Donahue, R. E., High, K. A., Mingozzi, F., Ng, C. Y., Zhou, J., Spence, Y., McCarville, M. B., Valentine, M., Allay, J., Coleman, J., Sleep, S., Gray, J. T., Nienhuis, A. W., and Davidoff, A. M. (2011) Long-term Safety and Efficacy Following Systemic Administration of a Self-complementary AAV Vector Encoding Human FIX Pseudotyped With Serotype 5 and 8 Capsid Proteins, Mol Ther 19, 876–885.Google Scholar
  11. 11.
    EMEA. (2006) General principles to address the risk of inadvertent germline integration of gene therapy vectors, in ICH Considerations, PEMEA/CHMP/ICH/469991/462006.Google Scholar
  12. 12.
    Gonin, P., and Gaillard, C. (2004) Gene transfer vector biodistribution: pivotal safety studies in clinical gene therapy development, Gene Ther 11 Suppl 1, S98–S108.PubMedCrossRefGoogle Scholar
  13. 13.
    Arruda, V. R., Fields, P. A., Milner, R., Wainwright, L., De Miguel, M. P., Donovan, P. J., Herzog, R. W., Nichols, T. C., Biegel, J. A., Razavi, M., Dake, M., Huff, D., Flake, A. W., Couto, L., Kay, M. A., and High, K. A. (2001) Lack of germline transmission of vector sequences following systemic administration of recombinant AAV-2 vector in males, Mol Ther 4, 586–592.PubMedCrossRefGoogle Scholar
  14. 14.
    Manno, C. S., Chew, A. J., Hutchison, S., Larson, P. J., Herzog, R. W., Arruda, V. R., Tai, S. J., Ragni, M. V., Thompson, A., Ozelo, M., Couto, L. B., Leonard, D. G., Johnson, F. A., McClelland, A., Scallan, C., Skarsgard, E., Flake, A. W., Kay, M. A., High, K. A., and Glader, B. (2003) AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B, Blood 101, 2963–2972.PubMedCrossRefGoogle Scholar
  15. 15.
    Favaro, P., Downey, H. D., Zhou, J. S., Wright, J. F., Hauck, B., Mingozzi, F., High, K. A., and Arruda, V. R. (2009) Host and vector-dependent effects on the risk of germline transmission of AAV vectors, Mol Ther 17, 1022–1030.PubMedCrossRefGoogle Scholar
  16. 16.
    Schuettrumpf, J., Liu, J. H., Couto, L. B., Addya, K., Leonard, D. G., Zhen, Z., Sommer, J., and Arruda, V. R. (2006) Inadvertent germline transmission of AAV2 vector: findings in a rabbit model correlate with those in a human clinical trial, Mol Ther 13, 1064–1073.PubMedCrossRefGoogle Scholar
  17. 17.
    Favaro, P., Finn, J. D., Siner, J. I., Wright, J. F., High, K. A., and Arruda, V. R. (2011) Safety of liver gene transfer following peripheral intravascular delivery of AAV-5 and AAV-6 in a large animal model, Hum Gene Ther 22, 843–852.Google Scholar
  18. 18.
    Salvetti, A., Oreve, S., Chadeuf, G., Favre, D., Cherel, Y., Champion-Arnaud, P., David-Ameline, J., and Moullier, P. (1998) Factors influencing recombinant adeno-associated virus production, Hum Gene Ther 9, 695–706.PubMedCrossRefGoogle Scholar
  19. 19.
    Zen, Z., Espinoza, Y., Bleu, T., Sommer, J. M., and Wright, J. F. (2004) Infectious titer assay for adeno-associated virus vectors with sensitivity sufficient to detect single infectious events, Hum Gene Ther 15, 709–715.PubMedCrossRefGoogle Scholar
  20. 20.
    Sharpe, R. (1994) Regulation of spermatogenesis., in The physiology of reproduction. (Knobil E, N. J., eds., Ed.), pp 1363–1419, Raven Press, Ltd, New York.Google Scholar
  21. 21.
    Penaud-Budloo, M., Le Guiner, C., Nowrouzi, A., Toromanoff, A., Cherel, Y., Chenuaud, P., Schmidt, M., von Kalle, C., Rolling, F., Moullier, P., and Snyder, R. O. (2008) Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle, J Virol 82, 7875–7885.PubMedCrossRefGoogle Scholar
  22. 22.
    Ni, W., Le Guiner, C., Gernoux, G., Penaud-Budloo, M., Moullier, P., and Snyder, R.O. (2011) Longevity of rAAV vector and plasmid DNA in blood after intramuscular injection in nonhuman primates: implications for gene doping, Gene Ther 18, 709–718.PubMedCrossRefGoogle Scholar
  23. 23.
    Kazazian, H. H., Jr. (1999) An estimated frequency of endogenous insertional mutations in humans, Nat Genet 22, 130.PubMedCrossRefGoogle Scholar
  24. 24.
    Goodier, J. L., and Kazazian, H. H., Jr. (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites, Cell 135, 23–35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Caroline Le Guiner
    • 1
  • Phillipe Moullier
    • 2
    Email author
  • Valder R. Arruda
    • 3
  1. 1.INSERM UMR 649/GENETHONNantesFrance
  2. 2.INSERM UMR 649/GENETHON/Molecular Genetics & Microbiology DepartmentUniversity of FloridaNantes, Cedex 01France
  3. 3.University of Pennsylvania School of Medicine, The Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations