Why Proteins in Mammalian Cells?

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 801)

Abstract

Producing recombinant mammalian proteins in native or near-native conformation is fundamental to many aspects of biology. Unfortunately, it is also a task whose outcome is extremely unpredictable. A protein that has been shaped over millions of generations of evolution for expression at a level appropriate to a specific cell type or in a particular developmental stage, may be toxic to a new host cell, or become insoluble (among many possible obstacles) when overexpressed in vitro. The object of this volume, “Protein Expression in Mammalian Cells,” is to offer guidance for those who wish (or who have been forced by circumstance) to overexpress a mammalian protein in mammalian cells.

Key words

Protein quality Stable expression Transient expression Protein folding Secreted proteins 

References

  1. 1.
    Beck, A., Wurch, T., Bailly, C., and Corvaia, N. (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat. Rev. Immunol. 10, 345–352.PubMedCrossRefGoogle Scholar
  2. 2.
    Labrijn, A.F., Aalberse, R.C., and Schuurman, J. (2008) When binding is enough: nonactivating antibody formats. Curr. Opin. Immunol. 20, 479–485.PubMedCrossRefGoogle Scholar
  3. 3.
    Wurm, F.M. (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22, 1393–1398.PubMedCrossRefGoogle Scholar
  4. 4.
    Shields, R.L., Lai, J., Keck, R., O’Connell, L.Y., Hong, K., Meng, Y.G., et al. (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740.PubMedCrossRefGoogle Scholar
  5. 5.
    Powers, E.T., Morimoto, R.I., Dillin, A,, Kelly, J.W., and Balch, W.E. (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991.PubMedCrossRefGoogle Scholar
  6. 6.
    Sifers, R.N. (2010) Manipulating proteostasis. Nat. Chem. Biol. 6, 400–401.PubMedCrossRefGoogle Scholar
  7. 7.
    Danon, D., Goldstein, L., Marikovsky, Y., and Skutelsky, E. (1972) Use of cationized ferritin as a label of negative charges on cell surfaces. J. Ultrastruct. Res. 38, 500–510.PubMedCrossRefGoogle Scholar
  8. 8.
    Graham, F.L., and van der Eb, A.J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 52, 456–467.PubMedCrossRefGoogle Scholar
  9. 9.
    Boussif, O., Lezoualc’h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B., et al. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297–7301.PubMedCrossRefGoogle Scholar
  10. 10.
    Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., et al. (1987) Lipo­fection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417.PubMedCrossRefGoogle Scholar
  11. 11.
    Kichler, A., Leborgne, C., Coeytaux, E., and Danos, O. (2001) Polyethylenimine-mediated gene delivery: a mechanistic study. J. Gene Med. 3, 135–144.PubMedCrossRefGoogle Scholar
  12. 12.
    Wong, E.A., and Capecchi, M.R. (1985) Effect of cell cycle position on transformation by microinjection. Somat. Cell. Mol. Genet. 11, 43–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Capecchi, M.R. (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell. 22, 479–488.PubMedCrossRefGoogle Scholar
  14. 14.
    Pollard, H., Remy, J.S., Loussouarn, G., Demolombe, S., Behr, J.P., and Escande, D. (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J. Biol. Chem. 273, 7507–7511.PubMedCrossRefGoogle Scholar
  15. 15.
    Hawley-Nelson, P., Lan, J., Shih, P.J, Jessee, J.A., Schifferli, K.P., Gebeyehu, G., et al. (2002) Peptide enhanced transfections, US Patent. 6,376,248, 2002.Google Scholar
  16. 16.
    Wang, C.Y., and Sugden, B. (2008) Identifying a property of origins of DNA synthesis required to support plasmids stably in human cells. Proc. Natl. Acad. Sci. USA 105, 9639–9644.PubMedCrossRefGoogle Scholar
  17. 17.
    Leight, E.R., and Sugden, B. (2001) Establishment of an oriP replicon is dependent upon an infrequent, epigenetic event. Mol. Cell Biol. 21, 4149–4161.PubMedCrossRefGoogle Scholar
  18. 18.
    Piechaczek, C., Fetzer, C., Baiker, A., Bode, J., and Lipps, H.J. (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res. 27, 426–428.PubMedCrossRefGoogle Scholar
  19. 19.
    Haase, R., Argyros, O., Wong, S.P., Harbottle, R.P., Lipps, H.J., Ogris, M., et al. (2010) pEPito: a significantly improved non-viral episomal expression vector for mammalian cells. BMC Biotechnol. 15, 20.CrossRefGoogle Scholar
  20. 20.
    Ye, J., Alvin, K., Latif, H., Hsu, A., Parikh, V., Whitmer, T., et al. (2010) Rapid protein production using CHO stable transfection pools. Biotechnol. Prog. 26, 1431–1437.PubMedCrossRefGoogle Scholar
  21. 21.
    Casales, E., Aranda, A., Quetglas, J.I., Ruiz-Guillen, M., Rodriguez-Madoz, J.R., Prieto, J., et al. (2010) A novel system for the production of high levels of functional human therapeutic proteins in stable cells with a Semliki Forest virus noncytopathic vector. Nat. Biotechnol. 27, 138–148.Google Scholar
  22. 22.
    Kost, T.A., Condreay, J.P., and Jarvis, D.L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23, 567–575.PubMedCrossRefGoogle Scholar
  23. 23.
    Hofmann, C., Sandig, V., Jennings, G., Rudolph, M., Schlag, P., and Strauss, M. (1995) Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc. Natl. Acad. Sci. USA 92, 10099–10103.PubMedCrossRefGoogle Scholar
  24. 24.
    Barsoum, J., Brown, R., McKee, M., and Boyce, F.M. (1997) Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum. Gene Ther. 8, 2011–2018.PubMedCrossRefGoogle Scholar
  25. 25.
    Volkman, L.E., and Goldsmith, P.A. (1983) In Vitro Survey of Autographa californica Nuclear Polyhedrosis Virus Interaction with Nontarget Vertebrate Host Cells. Appl. Environ. Microbiol. 45, 1085–1093.PubMedGoogle Scholar
  26. 26.
    Carbonell, L.F., and Miller, L.K. (1987) Baculovirus interaction with nontarget organisms: a virus-borne reporter gene is not expressed in two mammalian cell lines. Appl. Environ. Microbiol. 53, 1412–1417.PubMedGoogle Scholar
  27. 27.
    Boyce, F.M., and Bucher, NL. (1996) Baculovirus-mediated gene transfer into mammalian cells. Proc. Natl. Acad. Sci. USA 93, 2348–2352.PubMedCrossRefGoogle Scholar
  28. 28.
    Kost, T.A., and Condreay, J.P. (2002) Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol. 20, 173–180.PubMedCrossRefGoogle Scholar
  29. 29.
    Bacchetli, S., and Graham, F.L. (1977). Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA. Proc. Natl. Acad. Sci. USA 74, 1590–1594.CrossRefGoogle Scholar
  30. 30.
    Maitland, N.J., and McDougall, J.K. (1977). Biochemical transformation of mouse cells by fragments of herpes simples virus DNA. Cell. 11, 233–241.PubMedCrossRefGoogle Scholar
  31. 31.
    Wigler. M., Silverstein, S., Lee, L.S., Pellicer, A., Cheng, Y., and Axel, R. (1977) Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell. 11, 223–232.PubMedCrossRefGoogle Scholar
  32. 32.
    Perucho, M., Hanahan, D., and Wigler, M. (1980) Genetic and physical linkage of exogenous sequences in transformed cells. Cell. 22, 309–317.PubMedCrossRefGoogle Scholar
  33. 33.
    Derouazi, M., Martinet, D., Besuchet Schmutz, N., Flaction, R., Wicht, M., Bertschinger, M., et al. (2006) Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem. Biophys. Res. Commun. 340, 1069–1077.PubMedCrossRefGoogle Scholar
  34. 34.
    Folger, K.R., Wong, E.A., Wahl, G., and Capecchi, M.R. (1982) Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol. Cell Biol. 2, 1372–1387.PubMedGoogle Scholar
  35. 35.
    Kalwy, S., Rance, J., and Young, R. (2006) Toward more efficient protein expression: keep the message simple. Mol. Biotechnol. 34, 151–156.PubMedCrossRefGoogle Scholar
  36. 36.
    Kaufman, W.L., Kocman, I., Agrawal, V., Rahn, H.P., Besser, D., and Gossen, M. (2008) Homogeneity and persistence of transgene expression by omitting antibiotic selection in cell line isolation. Nucleic Acids Res. 36, e111.PubMedCrossRefGoogle Scholar
  37. 37.
    Weintraub, H., Cheng, P.F., and Conrad, K. (1986) Expression of transfected DNA depends on DNA topology. Cell. 46, 115–122.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen,C., and Okayama H. (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell Biol. 7, 2745–2752.PubMedGoogle Scholar
  39. 39.
    Liang, X., Teng, A., Braun, D.M., Felgner, J., Wang,Y., Baker, S.I., et al. (2002) Transcriptionally active polymerase chain reaction (TAP): high throughput gene expression using genome sequence data. J. Biol. Chem. 277, 3593–3598.PubMedCrossRefGoogle Scholar
  40. 40.
    Derouazi, M., Flaction, R., Girard, P., de Jesus, M., Jordan, M., and Wurm, F.M. (2006) Generation of recombinant Chinese hamster ovary cell lines by microinjection. Biotechnol. Lett. 28, 373–382.PubMedCrossRefGoogle Scholar
  41. 41.
    de la Cruz Edmonds, M.C., Tellers, M., Chan, C., Salmon, P., Robinson, D.K., and Markusen, J. (2006) Development of transfection and high-producer screening protocols for the CHOK1SV cell system. Mol. Biotechnol. 34, 179–190.PubMedCrossRefGoogle Scholar
  42. 42.
    Stuchbury, G., and Münch, G. (2010) Optimizing the generation of stable neuronal cell lines via pre-transfection restriction enzyme digestion of plasmid DNA. Cytotechnology. 62, 189–194.PubMedCrossRefGoogle Scholar
  43. 43.
    Barnes, L.M., Bentley, C.M., and Dickson, A.J. (2004) Molecular definition of predictive indicators of stable protein expression in recombinant NS0 myeloma cells. Biotechnol. Bioeng. 85, 115–121.PubMedCrossRefGoogle Scholar
  44. 44.
    Schebelle, L., Wolf, C., Stribl, C., Javaheri, T., Schnütgen, F., Ettinger, A., et al. (2010) Efficient conditional and promoter-specific in vivo expression of cDNAs of choice by taking advantage of recombinase-mediated cassette exchange using FlEx gene traps. Nucleic Acids Res. 38, e106.PubMedCrossRefGoogle Scholar
  45. 45.
    Nehlsen, K., Schucht, R., da Gama-Norton, L., Krömer, W., Baer, A., Cayli, A., et al. (2009) Recombinant protein expression by targeting pre-selected chromosomal loci. BMC Biotechnol. 9, 100.PubMedCrossRefGoogle Scholar
  46. 46.
    Barron, N., Piskareva, O., and Muniyappa, M. (2007) Targeted genetic modification of cell lines for recombinant protein production. Cytotechnology. 53, 65–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Welch, M., Villalobos, A., Gustafsson, C., and Minshull, J. (2009) You’re one in a googol: optimizing genes for protein expression. J. R. Soc. Interface. 6 Suppl 4, S467–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Maquat, L.E., Tarn, W.Y., and Isken, O. (2010) The pioneer round of translation: features and functions. Cell. 142, 368–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Hung, F., Deng, L., Ravnikar, P., Condon, R., Li, B., Do, L., et al. (2010) mRNA stability and antibody production in CHO cells: improvement through gene optimization. Biotechnol. J. 5, 393–401.PubMedCrossRefGoogle Scholar
  50. 50.
    Alexander, P.A., He, Y., Chen, Y., Orban, J., and Bryan, P.N. (2009) A minimal sequence code for switching protein structure and function. Proc. Natl. Acad. Sci. USA 106, 21149–21154.PubMedCrossRefGoogle Scholar
  51. 51.
    Dang, L., White, D.W., Gross, S., Bennett, B.D., Bittinger, M.A., Driggers, E.M., et al. (2010) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 462, 739–744.CrossRefGoogle Scholar
  52. 52.
    Whitesell, l., and Lindquist, S. (2005). HSP90 and the chaperoning of cancer. Nat. Rev. Cancer. 5, 761772.Google Scholar
  53. 53.
    Kobilka, B., and Schertler, G.F. (2008) New G-protein-coupled receptor crystal structures: insights and limitations. Trends Pharmacol. Sci. 29, 79–83.PubMedCrossRefGoogle Scholar
  54. 54.
    Bertschinger, M., Schertenleib, A., Cevey, J., Hacker, D.L., and Wurm, F.M. (2008) The kinetics of polyethylenimine-mediated transfection in suspension cultures of Chinese hamster ovary cells. Mol. Biotechnol. 40, 136–43.PubMedCrossRefGoogle Scholar
  55. 55.
    Lundstrom, K. (2003) Semliki Forest virus vectors for large-scale production of recombinant proteins. Methods Mol. Med. 76, 525–43.PubMedGoogle Scholar
  56. 56.
    Gaillet, B., Gilbert, R., Amziani, R., Guilbault, C., Gadoury, C., Caron, A.W., et al. (2007) High-level recombinant protein production in CHO cells using an adenoviral vector and the cumate gene-switch. Biotechnol. Prog. 23, 200–209.PubMedCrossRefGoogle Scholar
  57. 57.
    Kaufman, R.J., Wasley, L.C., Spiliotes, A.J., Gossels, S.D., Latt, S.A., Larsen, G.R., et al. (1985) Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol. Cell Biol. 5, 1750–1759.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Protein Expression Laboratory, SAIC-Frederick, Inc.National Cancer InstituteFrederickUSA

Personalised recommendations