Electrochemical Aptamer Sensor for Small Molecule Assays

  • Xin Liu
  • Wang Li
  • Xiahong Xu
  • Jiang Zhou
  • Zhou NieEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 800)


Detection and quantification of small molecules have played essential roles in environmental analysis and clinical diagnosis. Aptamers are oligonucleic acids that bind to a specific target molecule with high specificity and affinity which are promising features for sensing small molecules. Electrochemical detection is an attractive way to exploit aptamer sensors (aptasensors) because of its high sensitivity, simple instrumentation, low cost, fast response and portability. Herein, we describe a label-free small molecular aptasensor based on a signal-amplification mechanism which uses gold nanoparticles. This aptasensor can selectively detect low nanomolar levels of ATP, the example target compound.

Key words

Aptamer Electrochemical sensor Gold nanoparticles Aptasensor Signal-amplification Chronocoulometry ATP 



This work was funded by the National Natural Science Foundation of China (Nos. 20805013, 20907013), the National Basic Research Program of China (973 Program, Nos. 2009CB421601, 2011CB911002), the Natural Science Foundation of Hunan Province (Nos. 09JJ4006, 10JJ2005), and SKLCBSC-2010-01. We acknowledge Elsevier for the original publication of Fig. 4 in Talanta.


  1. 1.
    Zuo P, Ye BC (2006) Small Molecule Microarrays for Drug Residue Detection in Foodstuffs. J Agric Food Chem 54: 6978–6983CrossRefGoogle Scholar
  2. 2.
    Kerman K, Nagatani N, Chikae M et al (2006) Label-free electrochemical immunoassay for the detection of human chorionic gonadotropin hormone. Anal Chem 78: 5612–5616PubMedCrossRefGoogle Scholar
  3. 3.
    Liu BF, Ozaki M, Hisamoto H et al (2005) Microfluidic chip toward cellular ATP and ATP-conjugated metabolic analysis with bioluminescence detection. Anal Chem 77: 573–578PubMedCrossRefGoogle Scholar
  4. 4.
    Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21: 1192–1199PubMedCrossRefGoogle Scholar
  5. 5.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822PubMedCrossRefGoogle Scholar
  6. 6.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510PubMedCrossRefGoogle Scholar
  7. 7.
    Li D, Shlyahovsky B, Elbaz J et al (2007) Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-Aptamer conjugates. J Am Chem Soc 129: 5804–5805PubMedCrossRefGoogle Scholar
  8. 8.
    Cho EJ, Yang LT, Levy M (2005) Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J Am Chem Soc 127: 2022–2023PubMedCrossRefGoogle Scholar
  9. 9.
    Shiyahovsky B, Li D, Weizmann Y et al (2007) Spotlighting of cocaine by an autonomous aptamer-based machine. J Am Chem Soc 129: 3814–3815CrossRefGoogle Scholar
  10. 10.
    He PL, Shen L, Cao YH et al (2007) Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes. Anal Chem 79: 8024–8029PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang J, Song SP, Zhang LY et al (2006) Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): Effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc 128: 8575–8580PubMedCrossRefGoogle Scholar
  12. 12.
    Deng CY, Chen JH, Nie Z, et al (2009) Impedimetric Aptasensor with Femtomolar Sensitivity Based on the Enlargement of Surface-Charged Gold Nanoparticles. Anal Chem 81: 739–745PubMedCrossRefGoogle Scholar
  13. 13.
    Deng CY, Chen JH, Nie LH et al (2009) Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein. Anal Chem 81: 9972–9978PubMedCrossRefGoogle Scholar
  14. 14.
    Li W, Nie Z, Xu XH et al (2009) A sensitive, label free electrochemical aptasensor for ATP detection. Talanta 78: 954–958PubMedCrossRefGoogle Scholar
  15. 15.
    Li D, Song SP, Fan CH (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43: 631–641PubMedCrossRefGoogle Scholar
  16. 16.
    Steel AB, Herne TM, Tarlov MJ (1998) Electrochemical quantitation of DNA immobilized on gold. Anal Chem 70: 4670–4677PubMedCrossRefGoogle Scholar
  17. 17.
    Han K, Chen L, Lin ZS et al (2009) Target induced dissociation (TID) strategy for the development of electrochemical aptamer-based biosensor. Electrochem Commun 11: 157–160CrossRefGoogle Scholar
  18. 18.
    Shen L, Chen Z, Li YH et al (2007) A chronocoulometric aptamer sensor for adenosine monophosphate. Chem Commun 2169–2171Google Scholar
  19. 19.
    Yu FS, Li L, Chen F (2008) Determination of adenosine disodium triphosphate using prulifloxacin-terbium (III) as a fluorescence probe by spectrofluorimetry. Anal Chim Acta 610: 257–262PubMedCrossRefGoogle Scholar
  20. 20.
    Chen SJ, Huang Y F, Huang CC et al (2008) Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosens Bioelectron 23: 1749–1753PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xin Liu
    • 1
  • Wang Li
    • 1
  • Xiahong Xu
    • 1
  • Jiang Zhou
    • 1
  • Zhou Nie
    • 1
    Email author
  1. 1.State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina

Personalised recommendations