Surface Plasmon Resonance for Proteomics

  • Nico J. de MolEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 800)


Surface plasmon resonance (SPR) is a well-established label-free technique to detect mass changes near an SPR surface. For 20 years the benefits of SPR have been proven in biomolecular interaction analysis, including measurements of affinity and kinetics. The emergence of proteomics and a need for high throughput analysis drives the development of SPR systems capable of analyzing microarrays. The use of SPR imaging (also known as SPR microscopy) makes it possible to use multiplexed arrays to follow binding reactions. As SPR only analyzes the binding process, but not the identity of captured molecules on the SPR surface, technologies have been developed to integrate SPR with mass spectrometric (MS) analysis. Such approaches involve the recovery of analytes from the SPR surface and subsequent MALDI-TOF MS analysis, or LC-MS/MS after tryptic digestion of recovered proteins. An approach compatible with SPR arrays is on-chip MALDI-TOF MS, from arrayed spots on an SPR surface. This review describes some exciting developments in the application of SPR to proteomics, using instruments which are on the market already, or are expected to be available in the years to come.

Key words

Proteomics Surface plasmon resonance Mass spectrometry SPR imaging Microarray On-chip MALDI-TOF MS 


  1. 1.
    Rich RL, Myszka DG (2008) Survey of the year 2007 commercial optical biosensor literature. Journal of Molecular Recognition 21: 355–400PubMedCrossRefGoogle Scholar
  2. 2.
    Schuck P, Zhao H (2010) The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. Methods Mol Biol 627: 15–54PubMedCrossRefGoogle Scholar
  3. 3.
    Kooyman RBH (2008) Physics of Surface Plasmon Resonance. In: Schasfoort RBM, Tudos AJ (eds) Handbook of Surface Plasmon Resonance, Royal Society of Chemistry, Cambridge, UK, pp 15–34CrossRefGoogle Scholar
  4. 4.
    Salamon Z, MacLeod HA, Tollin G (1997) Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles. Biochimica et Biophysica Acta - Reviews on Biomembranes 1331: 117–129Google Scholar
  5. 5.
    Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil Magm 4: 396–402Google Scholar
  6. 6.
    Stenberg E, Persson B, Roos H et al (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J Colloid Interface Sci 143: 513–526CrossRefGoogle Scholar
  7. 7.
    Li P, Huang Y, Hu J et al (2002) Surface plasmon resonance studies on molecular imprinting. Sensors 2: 35–40CrossRefGoogle Scholar
  8. 8.
    Boozer C, Kim G, Cong S et al (2006) Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr Opin Biotechnol 17: 400–405PubMedCrossRefGoogle Scholar
  9. 9.
    Shumaker-Parry JS, Campbell CT (2004) Quantitative Methods for Spatially Resolved Adsorption/Desorption Measurements in Real Time by Surface Plasmon Resonance Microscopy. Anal Chem 76: 907–917PubMedCrossRefGoogle Scholar
  10. 10.
    Campbell CT, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28: 2380–2392PubMedCrossRefGoogle Scholar
  11. 11.
    Smith EA, Corn RM (2003) Surface Plasmon Resonance Imaging as a Tool to Monitor Biomolecular Interactions in an Array Based Format. Appl Spectrosc 57: 320A–332APubMedCrossRefGoogle Scholar
  12. 12.
    Lee HJ, Nedelkov D, Corn RM (2006) Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers. Anal Chem 78: 6504–6510PubMedCrossRefGoogle Scholar
  13. 13.
    Espina V, Woodhouse EC, Wulfkuhle J et al (2004) Protein microarray detection strategies: Focus on direct detection technologies. J Immunol Methods 290: 121–133PubMedCrossRefGoogle Scholar
  14. 14.
    Kimple AJ, Muller RE, Siderovski DP et al (2010) A capture coupling method for the covalent immobilization of hexahistidine tagged proteins for surface plasmon resonance. Methods Mol Biol 627: 91–100PubMedCrossRefGoogle Scholar
  15. 15.
    Herne TM, Tarlov MJ (1997) Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc 119: 8916–8920CrossRefGoogle Scholar
  16. 16.
    Gedig ET (2008) Surface Chemistry in SPR Technology. In: Schasfoort RBM, Tudos AJ (eds) Handbook of Surface Plasmon Resonance, RSC Publishing, Cambridge, UK, pp 173–220CrossRefGoogle Scholar
  17. 17.
    Cretich M, Damin F, Pirri G et al (2006) Protein and peptide arrays: Recent trends and new directions. Biomol Eng 23: 77–88PubMedCrossRefGoogle Scholar
  18. 18.
    Krishnamoorthy G, Carlen ET, Deboer HL et al (2010) Electrokinetic Lab-on-a-BioChip for Multi-ligand/Multi-analyte Biosensing. Anal Chem 82: 4145–4150PubMedCrossRefGoogle Scholar
  19. 19.
    Goodrich TT, Lee HJ, Corn RM (2004) Direct Detection of Genomic DNA by Enzymatically Amplified SPR Imaging Measurements of RNA Microarrays. J Am Chem Soc 126: 4086–4087PubMedCrossRefGoogle Scholar
  20. 20.
    Zhou H, Bouwman K, Schotanus M et al (2004) Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements. Genome Biol 5: R28PubMedCrossRefGoogle Scholar
  21. 21.
    Li Y, Hye JL, Corn RM (2007) Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem 79: 1082–1088PubMedCrossRefGoogle Scholar
  22. 22.
    He L, Musick MD, Nicewarner SR et al (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122: 9071–9077CrossRefGoogle Scholar
  23. 23.
    Li Y, Wark AW, Lee HJ et al (2006) Single-nucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal Chem 78: 3158–3164PubMedCrossRefGoogle Scholar
  24. 24.
    Fang S, Lee HJ, Wark AW et al (2006) Attomole microarray detection of MicroRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128: 14044–14046PubMedCrossRefGoogle Scholar
  25. 25.
    Gifford LK, Sendroiu IE, Corn RM et al (2010) Attomole detection of mesophilic DNA polymerase products by nanoparticle-enhanced surface plasmon resonance imaging on ­glassified gold surfaces. J Am Chem Soc 132: 9265–9267PubMedCrossRefGoogle Scholar
  26. 26.
    Schasfoort RBM, McWhirter A (2008) SPR Instrumentation. In: Schasfoort RBM, Tudos AJ (eds) Handbook of Surface Plasmon Resonance, The Royal Society of Chemistry, Cambridge UK, pp 35–80CrossRefGoogle Scholar
  27. 27.
    Beusink JB, Lokate AMC, Besselink GAJ et al (2008) Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays. Biosensors and Bioelectronics 23: 839–844PubMedCrossRefGoogle Scholar
  28. 28.
    Nedelkov D (2010) Integration of SPR biosensors with mass spectrometry (SPR-MS). Methods Mol Biol 627: 261–268PubMedCrossRefGoogle Scholar
  29. 29.
    Borch J, Roepstorff P (2010) SPR/MS: recovery from sensorchips for protein identification by MALDI-TOF mass spectrometry. Methods Mol Biol 627: 269–281PubMedCrossRefGoogle Scholar
  30. 30.
    Situ C, Mooney MH, Elliott CT et al (2010) Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. TrAC – Trends in Analytical Chemistry 29: 1305–1315CrossRefGoogle Scholar
  31. 31.
    Larsericsdotter H, Jansson Ö, Zhukov A et al (2006) Optimizing the surface plasmon resonance/mass spectrometry interface for functional proteomics applications: How to avoid and utilize nonspecific adsorption. Proteomics 6: 2355–2364PubMedCrossRefGoogle Scholar
  32. 32.
    Visser NFC, Scholten A, Van Den Heuvel RHH et al (2007) Surface-plasmon-resonance-based chemical proteomics: Efficient specific extraction and semiquantitative identification of cyclic nucleotide-binding proteins from cellular lysates by using a combination of surface plasmon resonance, sequential elution and liquid chromatography-tandem mass spectrometry. ChemBioChem 8: 298–305PubMedCrossRefGoogle Scholar
  33. 33.
    Nedelkov D, Nelson RW, Kiernan UA et al (2003) Detection of bound and free IGF-1 and IGF-2 in human plasma via biomolecular interaction analysis mass spectrometry. FEBS Lett 536: 130–134PubMedCrossRefGoogle Scholar
  34. 34.
    Nedelkov D, Nelson RW (2000) Practical considerations in BIA/MS: Optimizing the biosensor-mass spectrometry interface. Journal of Molecular Recognition 13: 140–145PubMedCrossRefGoogle Scholar
  35. 35.
    Nedelkov D, Nelson RW (2003) Surface plasmon resonance mass spectrometry: Recent progress and outlooks. Trends Biotechnol 21: 301–305PubMedCrossRefGoogle Scholar
  36. 36.
    Grote J, Dankbar N, Gedig E et al (2005) Surface plasmon resonance/mass spectrometry interface. Anal Chem 77: 1157–1162PubMedCrossRefGoogle Scholar
  37. 37.
    Bellon S, Buchmann W, Gonnet F et al (2009) Hyphenation of surface plasmon resonance imaging to matrix-assisted laser desorption ionization mass spectrometry by on-chip mass spectrometry and tandem mass spectrometry analysis. Anal Chem 81: 7695–7702PubMedCrossRefGoogle Scholar
  38. 38.
    Nedelkov D (2007) Development of surface plasmon resonance mass spectrometry array platform. Anal Chem 79: 5987–5990PubMedCrossRefGoogle Scholar
  39. 39.
    Steiner G (2004) Surface plasmon resonance imaging. Analytical and Bioanalytical Chemistry 379: 328–331PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations