Skip to main content

Meningococcal Ligands and Molecular Targets of the Host

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 799))

Abstract

Meningococcal mechanisms of adhesion are complex, involving multiple adhesins and their respective target receptors on host cells. Three major surface structures – pili, Opa, and Opc – have been known for some time to mediate meningococcal adhesion to target human cells. More recently, several other relatively minor adhesins have also come to light. The literature on bacterial adhesion mechanisms provides numerous examples of various adhesins acting cooperatively in an apparently hierarchical and sequential manner; in other instances, adhesins may act in concert leading to high avidity interactions, often a prelude to cellular invasion and tissue penetration. Such examples are also present in the case of meningococci, although our knowledge of adhesin cooperation and synergy is far from complete. Meningococcal mechanisms used to target the host, which are often specific for the host or a tissue within the host, include both lectin-like interactions and protein–protein interactions; the latter tend to determine specificity in general. Understanding (a) what determines specificity (i.e. molecular features of adhesins and receptors), (b) encourages cellular penetration (i.e. adhesin pairs, which act in concert or synergistically to deliver effective signals for invasion and induce other cellular responses), (c) level of redundancy (more than one mechanisms of targeting host receptors), (d) host situations that encourage tissue penetration (inflammatory situations during which circulating cytokines upregulate target cell receptors, effectively encouraging greater adhesion/invasion), and (e) down-stream effects on host functions in general are all clearly important in our future strategies of controlling meningococcal pathogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Carbonnelle E, Hill DJ, Morand P et al (2009) Meningococcal interactions with the host. Vaccine 27: B78–B89.

    CAS  PubMed  Google Scholar 

  2. McGee ZA, Stephens DS (1984) Common pathways of invasion of mucosal barriers by Neisseria gonorrhoeae and Neisseria meningitidis. Surv Synth Path Res 3: 1–10.

    CAS  Google Scholar 

  3. Virji M, Alexandrescu C, Ferguson DJP et al (1992) Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol Microbiol 6: 1271–1279.

    CAS  PubMed  Google Scholar 

  4. Nassif X, Lowy J, Stenberg P et al (1993) Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol Microbiol 8: 719–725.

    CAS  PubMed  Google Scholar 

  5. Virji M, Saunders JR, Sims G et al (1993) Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol 10: 1013–1028.

    CAS  PubMed  Google Scholar 

  6. Marceau M, Forest K, Beretti J et al (1998) Consequences of the loss of o-linked glycosylation of meningococcal type iv pilin on piliation and pilus-mediated adhesion. Mol Microbiol 27: 705–715.

    CAS  PubMed  Google Scholar 

  7. Kallstrom H, Liszewski MK, Atkinson JP et al (1997) Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Mol Microbiol 25: 639–647.

    CAS  PubMed  Google Scholar 

  8. Rytkonen A, Johansson L, Asp V et al (2001) Soluble pilin of Neisseria gonorrhoeae interacts with human target cells and tissue. Infect Immun 69: 6419–6426.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kirchner M, Heuer D, Meyer TF (2005) CD46-independent binding of neisserial type IV pili and the major pilus adhesin, PilC, to human epithelial cells. Infect Immun 73: 3072–3082.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tobiason DM, Seifert HS (2001) Inverse relationship between pilus-mediated gonococcal adherence and surface expression of the pilus receptor, CD46. Microbiology-Sgm 147: 2333–2340.

    CAS  Google Scholar 

  11. Kirchner M, Meyer TF (2005) The PilC adhesin of the Neisseria type IV pilus - binding specificities and new insights into the nature of the host cell receptor. Mol Microbiol 56: 945–957.

    CAS  PubMed  Google Scholar 

  12. Sjolinder H, Jonsson AB (2007) Imaging of disease dynamics during meningococcal sepsis. Plos One 2:e241.

    PubMed  PubMed Central  Google Scholar 

  13. Aho EL, Dempsey JA, Hobbs MM et al (1991) Characterization of the opa (class-5) gene family of Neisseria meningitidis. Mol Micro 5: 1429–1437.

    CAS  Google Scholar 

  14. Achtman M (1995) Epidemic spread and antigenic variability of Neisseria meningitidis. Trend Microbiol 3: 186–192.

    CAS  Google Scholar 

  15. Zhu PX, Morelli G, Achtman M (1999) The opcA and psi opcB regions in Neisseria: genes, pseudogenes, deletions, insertion elements and DNA islands. Mol Micro 33: 635–650.

    CAS  Google Scholar 

  16. Virji M, Makepeace K, Ferguson DJP et al (1996) Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae. Mol Microbiol 22: 941–950.

    CAS  PubMed  Google Scholar 

  17. Virji M, Watt SM, Barker S et al (1996) The N-domain of the human CD66a adhesion molecule is a target for Opa proteins of Neisseria meningitidis and Neisseria gonorrhoeae. Mol Microbiol 22: 929–939.

    CAS  PubMed  Google Scholar 

  18. Virji M, Makepeace K, Moxon R (1994) Distinct mechanisms of interactions of Opc-expressing meningococci at apical and basolateral surfaces of human endothelial cells; the role of integrins in apical interactions. Mol Microbiol 14: 173–184.

    CAS  PubMed  Google Scholar 

  19. Unkmeir A, Latsch K, Dietrich G et al (2002) Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Mol Micro 46: 933–946.

    CAS  Google Scholar 

  20. Chen T, Belland RJ, Wilson J et al (1995) Adherence of pilus- Opa+ gonococci to epithelial cells in vitro involves heparan sulfate. J Exp Med 182: 511–517.

    CAS  PubMed  Google Scholar 

  21. Virji M, Makepeace K, Peak IRA et al (1995) Opc- and pilus-dependent interactions of meningococci with human endothelial cells: molecular mechanisms and modulation by surface polysaccharides. Mol Microbiol 18: 741–754.

    CAS  PubMed  Google Scholar 

  22. deVries FP, Cole R, Dankert J et al (1998) Neisseria meningitidis producing the Opc adhesin binds epithelial cell proteoglycan receptors. Mol Microbiol 27: 1203–1212.

    CAS  Google Scholar 

  23. Cunha CSE, Griffiths NJ, Virji M (2010) Neisseria meningitidis Opc invasin binds to the sulphated tyrosines of activated vitronectin to attach to and invade human brain endothelial cells. Plos Pathogens 6: e1000911.

    Google Scholar 

  24. Cunha CSE, Griffiths NJ, Murillo I et al (2009) Neisseria meningitidis Opc invasin binds to the cytoskeletal protein alpha-actinin. Cell Micro 11: 389–405.

    CAS  Google Scholar 

  25. Frasch CE, Zollinger WD, Poolman JT (1985) Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev Infect Dis 7: 504–510.

    CAS  PubMed  Google Scholar 

  26. Orihuela CJ, Mahdavi J, Thornton J et al (2009) Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 119: 1638–1646.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Scarselli M, Serruto D, Montanari P et al (2006) Neisseria meningitidis NhhA is a multifunctional trimeric autotransporter adhesin. Mol Micro 61: 631–644.

    CAS  Google Scholar 

  28. Virji M, Griffiths NJ, Hill DJ et al, Neisseria meninigitidis Msf (NhhA) interacts directly with human vitronectin: the interplay between meningococcal Hsf and Opc in host cell adhesion and serum resistance, in: 17th International Pathogenic Neisseria Conference Canada., 2010

    Google Scholar 

  29. Griffiths NJ, Bradley CJ, Heyderman RS et al (2007) IFN-gamma amplifies NF kappa B-dependent Neisseria meningitidis invasion of epithelial cells via specific upregulation of CEA-related cell adhesion molecule 1. Cell Micro 9: 2968–2983.

    CAS  Google Scholar 

  30. Rowe HA, Griffiths NJ, Hill DJ et al (2007) Co-ordinate action of bacterial adhesins and human carcinoembryonic antigen receptors in enhanced cellular invasion by capsulate serum resistant Neisseria meningitidis. Cell Micro 9: 154–168.

    CAS  Google Scholar 

  31. Schielke S, Frosch M, Kurzai O (2010) Virulence determinants involved in differential host niche adaptation of Neisseria meningitidis and Neisseria gonorrhoeae. Med Micro Immunol 199: 185–196.

    CAS  Google Scholar 

  32. Jones C, Virji M, Crocker PR (2003) Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Micro 49: 1213–1225.

    CAS  Google Scholar 

  33. Harvey HA, Porat N, Campbell CA et al (2000) Gonococcal lipooligosaccharide is a ligand for the asialoglycoprotein receptor on human sperm. Mol Micro 36: 1059–1070.

    CAS  Google Scholar 

  34. Rechner C, Kuhlewein C, Muller A et al (2007) Host glycoprotein Gp96 and scavenger receptor SREC interact with PorB of disseminating Neisseria gonorrhoeae in an epithelial invasion pathway. Cell Host & Microbe 2: 393–403.

    CAS  Google Scholar 

  35. Spence JM, Tyler RE, Domaoal RA et al (2002) L12 enhances gonococcal transcytosis of polarized Hec1B cells via the lutropin receptor. Micro Path 32: 117–125.

    CAS  Google Scholar 

  36. Zughaier SM, Tzeng YL, Zimmer SM et al (2004) Neisseria meningitidis lipooligosaccharide structure-dependent activation of the macrophage CD14/toll-like receptor 4 pathway. Infect Immun 72: 371–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zimmer SM, Zughaier SM, Tzeng YL et al (2007) Human MD-2 discrimination of meningococcal lipid A structures and activation of TLR4. Glycobiol 17: 847–856.

    CAS  Google Scholar 

  38. Massari P, Henneke P, Ho Y et al (2002) Cutting edge: Immune stimulation by neisserial porins is toll-like receptor 2 and MyD88 dependent. J Immunol 168: 1533–1537.

    CAS  PubMed  Google Scholar 

  39. Wetzler LM (2010) Innate immune function of the neisserial porins and the relationship to vaccine adjuvant activity. Future Microbiol 5: 749–758.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zughaier SM (2010) Neisseria meningitidis capsular polysaccharides induce inflammatory responses via TLR2 and TLR4-MD-2. J Leuk Biol Epub ahead of print December 29.

    Google Scholar 

  41. Magnusson M, Tobes R, Sancho J et al (2007) Cutting edge: Natural DNA repetitive extragenic sequences from Gram-negative pathogens strongly stimulate TLR9. J Immunol 179: 31–35.

    CAS  PubMed  Google Scholar 

  42. Chauhan VS, Sterka DG, Furr SR et al (2009) NOD2 plays an important role in the inflammatory responses of microglia and astrocytes to bacterial CNS pathogens. Glia 57: 414–423.

    PubMed  PubMed Central  Google Scholar 

  43. Urwin R, Russell JE, Thompson EAL et al (2004) Distribution of surface protein variants among hyperinvasive meningococci: Implications for vaccine design. Infect Immun 72: 5955–5962.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Callaghan MJ, Jolley KA, Maiden MCJ (2006) Opacity-associated adhesin repertoire in hyperinvasive Neisseria meningitidis. Infect Immun 74: 5085–5094.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Feavers IM, Pizza M (2009) Meningococcal protein antigens and vaccines. Vaccine 27: B42-B50.

    CAS  PubMed  Google Scholar 

  46. Coureuil M, Lecuyer H, Scott MG et al (2010) Meningococcus hijacks a β2-adrenoceptor/β-Arrestin pathway to cross brain microvasculature endothelium. Cell 143: 1149–1160.

    CAS  PubMed  Google Scholar 

  47. Muenzner P, Bachmann V, Zimmermann W et al (2010) Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation. Science 329: 1197–1201.

    CAS  PubMed  Google Scholar 

  48. Fransen F, Heckenberg SGB, Hamstra HJ et al (2009) Naturally occurring lipid A mutants in Neisseria meningitidis from patients with invasive meningococcal disease are associated with reduced coagulopathy. PLoS Pathog 5: e1000396.

    PubMed  PubMed Central  Google Scholar 

  49. Byers HL, Campbell J, van Ulsen P et al (2009) Candidate verification of iron-regulated Neisseria meningitidis proteins using isotopic versions of tandem mass tags (TMT) and single reaction monitoring. J Proteomics 73: 231–239.

    CAS  PubMed  Google Scholar 

  50. Bumann D (2010) Pathogen proteomes during infection: A basis for infection research and novel control strategies. J Proteomics 73: 2267–2276.

    CAS  PubMed  Google Scholar 

  51. Virji M, Evans D, Hadfield A et al (1999) Critical determinants of host receptor targeting by Neisseria meningitidis and Neisseria gonorrhoeae: identification of Opa adhesiotopes on the N-domain of CD66 molecules. Mol Microbiol 34: 538–551.

    CAS  PubMed  Google Scholar 

  52. Moore J, Bailey SES, Benmechernene Z et al (2005) Recognition of saccharides by the OpcA, OpaD, and OpaB outer membrane proteins from Neisseria meningitidis. J Biol Chem 280: 31489–31497.

    CAS  PubMed  Google Scholar 

  53. Griffiths NJ, Virji M, Meningococcal vitronectin binding phenotypes: Sialylation, serum resistance and cellular interactions, in: 17th International Pathogenic Neisseria Conference, 2010.

    Google Scholar 

  54. Serruto D, du-Bobie J, Scarselli M et al (2003) Neisseria meningitidis App, a new adhesin with autocatalytic serine protease activity. Mol Micro 48: 323–334.

    CAS  Google Scholar 

  55. Schmitt C, Turner D, Boesl M et al (2007) A functional two-partner secretion system contributes to adhesion of Neisseria meningitidis to epithelial cells. J Bacteriol 189: 7968–7976.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Comanducci M, Bambini S, Brunelli B et al (2002) NadA, a novel vaccine candidate of Neisseria meningitidis. J Exp Med 195: 1445–1454.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Franzoso S, Mazzon C, Sztukowska M et al (2008) Human monocytes/macrophages are a target of Neisseria meningitidis Adhesin A (NadA). J Leuk Biol 83: 1100–1110.

    CAS  Google Scholar 

  58. Turner DPJ, Marietou AG, Johnston L et al (2006) Characterization of MspA, an immunogenic autotransporter protein that mediates adhesion to epithelial and endothelial cells in Neisseria meningitidis. Infect Immun 74: 2957–2964.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Oldfield NJ, Bland SJ, Taraktsoglou M et al (2007) T-cell stimulating protein A (TspA) of Neisseria meningitidis is required for optimal adhesion to human cells. Cell Micro 9: 463–478.

    CAS  Google Scholar 

  60. Tunio SA, Oldfield NJ, Berry A et al (2010) The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion. Mol Micro 76: 605–615.

    CAS  Google Scholar 

  61. Tunio SA, Oldfield NJ, Ala’Aldeen DAA et al (2010) The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells. BMC Microbiol 10:280.

    PubMed  PubMed Central  Google Scholar 

  62. Takahashi H, Carlson RW, Muszynski A et al (2008) Modification of lipooligosaccharide with phosphoethanolamine by LptA in Neisseria meningitidis enhances meningococcal adhesion to human endothelial and epithelial cells. Infect Immun 76: 5777–5789.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mumtaz Virji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hill, D.J., Virji, M. (2012). Meningococcal Ligands and Molecular Targets of the Host. In: Christodoulides, M. (eds) Neisseria meningitidis. Methods in Molecular Biology, vol 799. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-61779-346-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-346-2_9

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-61779-345-5

  • Online ISBN: 978-1-61779-346-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics