Skip to main content

Single Muscle-Fiber Isolation and Culture for Cellular, Molecular, Pharmacological, and Evolutionary Studies

  • Protocol
  • First Online:
Myogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 798))

Abstract

The technique of single muscle-fiber cultures has already proven valuable in extending knowledge of myogenesis, stem cell heterogeneity, the stem cell niche in skeletal muscle, and satellite cell activation. This report reviews the background of the model and applications, and details the procedures of muscle dissection, fiber digestion and isolation, cleaning the fiber preparation, plating fibers, and extensions of the technique for studying activation from stable quiescence of satellite cells, mRNA expression by in situ hybridization and regulation of satellite cell activation in zebrafish muscle by nitric oxide, hepatocyte growth factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE. (2002) Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 13:2909–18.

    Article  PubMed  CAS  Google Scholar 

  2. Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE. (2001) Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267:107–14.

    Article  PubMed  CAS  Google Scholar 

  3. Allen RE, Boxhorn LK. (1987) Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. J Cell Physiol 133:567–72.

    Article  PubMed  CAS  Google Scholar 

  4. Allen RE, Temm-Grove CJ, Sheehan SM, Rice G. (1997) Skeletal muscle satellite cell cultures. Methods Cell Biol 52:155–76.

    Article  PubMed  CAS  Google Scholar 

  5. Anderson JE. (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11:1859–74.

    PubMed  CAS  Google Scholar 

  6. Cooper RN, Tajbakhsh S, Mouly V, Cossu G, Buckingham M, Butler-Browne GS. (1999) In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci 112:2895–901.

    PubMed  CAS  Google Scholar 

  7. Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE. (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–28.

    Article  PubMed  CAS  Google Scholar 

  8. Robertson TA, Grounds MD, Papadimitriou JM. (1992) Elucidation of aspects of murine skeletal muscle regeneration using local and whole body irradiation. J Anat 181:265–76.

    PubMed  Google Scholar 

  9. Ravenscroft G, Nowak KJ, Jackaman C et al. (2007) Dissociated flexor digitorum brevis myofiber culture system – a more mature ­muscle culture system. Cell Motil Cytoskeleton 64:727–38.

    Article  PubMed  CAS  Google Scholar 

  10. Anderson J, Pilipowicz O. (2002) Activation of muscle satellite cells in single-fiber cultures. Nitric Oxide 7:36–41.

    Article  PubMed  CAS  Google Scholar 

  11. Bischoff R. (1986) A satellite cell mitogen from crushed adult muscle. Dev Biol 115:140–7.

    Article  PubMed  CAS  Google Scholar 

  12. Bischoff R. (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115:129–39.

    Article  PubMed  CAS  Google Scholar 

  13. Yablonka-Reuveni Z, Rivera AJ. (1997) Influence of PDGF-BB on proliferation and transition through the MyoD-myogenin-MEF2A expression program during myogenesis in mouse C2 myoblasts. Growth Factors 15:1–27.

    Article  PubMed  CAS  Google Scholar 

  14. Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P. (1999) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210:440–55.

    Article  PubMed  CAS  Google Scholar 

  15. Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z. (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66.

    Article  PubMed  CAS  Google Scholar 

  16. Day K, Shefer G, Richardson JB, Enikolopov G, Yablonka-Reuveni Z. (2007) Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol 304:246–59.

    Article  PubMed  CAS  Google Scholar 

  17. Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA. (1995) Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim 31:773–9.

    Article  PubMed  CAS  Google Scholar 

  18. Bekoff A, Betz W. (1977) Properties of isolated adult rat muscle fibres maintained in tissue culture. J Physiol 271:537–47.

    PubMed  CAS  Google Scholar 

  19. Wozniak AC, Anderson JE. (2005) Single-fiber isolation and maintenance of satellite cell quiescence. Biochem Cell Biol 83:674–6.

    Article  PubMed  CAS  Google Scholar 

  20. Anderson JE. Murray L. (1998) Barr Award Lecture. Studies of the dynamics of skeletal muscle regeneration: the mouse came back! Biochem Cell Biol 76:13–26.

    Article  PubMed  CAS  Google Scholar 

  21. Anderson JE, Carvalho RS, Yen E, Scott JE. (1993) Measurement of strain in cultured bone and fetal muscle and lung cells. In Vitro Cell Dev Biol 29A:183–6.

    Article  PubMed  CAS  Google Scholar 

  22. Scott JE, Oulton MR, Anderson JE. (1994) Strain induces change in phospholipid and DNA synthesis, cAMP levels and cytoskeletal fibers in isolated fetal rabbit type II alveolar cells. Prog Respir Res 27:173–8.

    Google Scholar 

  23. Wozniak AC, Pilipowicz O, Yablonka-Reuveni Z et al. (2003) C-met expression and mecha­nical activation of satellite cells on cultured muscle fibers. J Histochem Cytochem 51:1437–45.

    Article  PubMed  CAS  Google Scholar 

  24. Wozniak AC, Anderson JE. (2009) The dynamics of the nitric oxide release-transient from stretched muscle cells. Int J Biochem Cell Biol 41:625–31.

    Article  PubMed  CAS  Google Scholar 

  25. Li C, Xu Q. (2000) Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal 12:435–45.

    Article  PubMed  CAS  Google Scholar 

  26. Wozniak AC, Anderson JE. (2007) Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Dev Dyn 236:240–50.

    Article  PubMed  CAS  Google Scholar 

  27. IHCWorld Protocols. Immunohistochemistry Protocol for Mouse Antibody on Mouse Tissues. IHCWorld website 2008;Available at: URL: http://www.ihcworld.com/_protocols/general_IHC/immuno_mom.htm.

  28. Garrett KL, Anderson JE. (1995) Colocalization of bFGF and the myogenic regulatory gene myogenin in dystrophic mdx muscle precursors and young myotubes in vivo. Dev Biol 169:596–608.

    Article  PubMed  CAS  Google Scholar 

  29. Yablonka-Reuveni Z, Seger R, Rivera AJ. (1999) Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47:23–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of a dedicated research technician (Ritika Upadhaya), summer research students (Alyssa Janke, Stéphane Lenoski, Melody Ong, Jacqueline Richelle, and Colin Rumbolt) and a graduate student (Dr. Orest Pilipowicz, MSc, DMD) provided experiments illustrating effects of drug screening on mouse fibers (SL & CR, see Fig. 1), marcaine in mouse fibers (OP, see Fig. 3) and ISDN and HGF treatments in zebrafish fiber cultures (AJ, MO and JR, see Fig. 4). Funding for this work (to JEA) was from the Canadian Space Agency, the Manitoba Institute of Child Health (MICH), and the Natural Sciences and Engineering Research Council (NSERC). Student support was received from NSERC Under­graduate Summer Research Scholarships (AJ, MO, CR, JR), Faculty of Science University of Manitoba Undergraduate Scholarships (SL), a MICH Graduate Scholarship (OP), a Canada Graduate Scholarship (ACW) and a post-doctoral scholarship from the Canadian Bureau for International Education (WM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy E. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Anderson, J.E., Wozniak, A.C., Mizunoya, W. (2012). Single Muscle-Fiber Isolation and Culture for Cellular, Molecular, Pharmacological, and Evolutionary Studies. In: DiMario, J. (eds) Myogenesis. Methods in Molecular Biology, vol 798. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-343-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-343-1_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-342-4

  • Online ISBN: 978-1-61779-343-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics