Skip to main content

An Improved Restriction Enzyme Accessibility Assay for Analyzing Changes in Chromatin Structure in Samples of Limited Cell Number

  • Protocol
  • First Online:
Myogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 798))

Abstract

Studies investigating mechanisms that control gene regulation frequently examine the accessibility of specific DNA sequences to nuclease cleavage. In general, sequences that are sensitive to nuclease cleavage are considered to be in an “open” chromatin conformation that is associated with regulatory factor binding, while sequences resistant to nuclease cleavage are considered to be in a “closed” conformation commonly associated with chromatin that is neither poised for transcription nor being actively transcribed. Changes in nuclease accessibility at specific genomic sequences reflect changes in the local chromatin structure that can occur as a result of signaling cues in the extracellular environment. These changes in chromatin structure usually precede or are coincident with changes in gene expression patterns and are therefore a useful marker of regulatory events controlling transcription. We describe a method to perform restriction enzyme accessibility assays (REAA) that utilizes ligation-mediated polymerase chain reaction (LM-PCR) technology and that permits assessment of samples from any source containing as few as 1,000 cells. Use of this modified REAA protocol will enhance analysis of chromatin structural changes at specific DNA sequences of interest by making it possible to analyze samples where unrestricted amounts of sample are not readily available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weintraub, H., and Groudine, M. (1976) Chromosomal subunits in active genes have an altered conformation. Science 193, 848–856.

    Article  PubMed  CAS  Google Scholar 

  2. Wu, C., Wong, Y. C., and Elgin, S. C. (1979) The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity. Cell 16, 807–814.

    Article  PubMed  CAS  Google Scholar 

  3. Wu, C., Bingham, P. M., Livak, K. J., Holmgren, R., and Elgin, S. C. (1979) The chromatin structure of specific genes: I. Evidence for higher order domains of defined DNA sequence. Cell 16, 797–806.

    Article  PubMed  CAS  Google Scholar 

  4. Wu, C. (1980) The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286, 854–860.

    Article  PubMed  CAS  Google Scholar 

  5. Reeves, R. (1984) Transcriptionally active chromatin. Biochim Biophys Acta 782, 343–393.

    Article  PubMed  CAS  Google Scholar 

  6. Gross, D. S., and Garrard, W. T. (1988) Nuclease hypersensitive sites in chromatin. Annu Rev Biochem 57, 159–197.

    Article  PubMed  CAS  Google Scholar 

  7. Elgin, S. C. (1981) DNAase I-hypersensitive sites of chromatin. Cell 27, 413–415.

    Article  PubMed  CAS  Google Scholar 

  8. Lipchitz, L., and Axel, R. (1976) Restriction endonuclease cleavage of satellite DNA in intact bovine nuclei. Cell 9, 355–364.

    Article  PubMed  CAS  Google Scholar 

  9. Pfeiffer, W., and Zachau, H. G. (1980) Accessibility of expressed and non-expressed genes to a restriction nuclease. Nucleic Acids Res 8, 4621–4638.

    Article  PubMed  CAS  Google Scholar 

  10. Mueller, P. R., Salser, S. J., and Wold, B. (1988) Constitutive and metal-inducible protein:DNA interactions at the mouse metallothionein I promoter examined by in vivo and in vitro footprinting. Genes Dev 2, 412–427.

    Article  PubMed  CAS  Google Scholar 

  11. Carey, M., and Smale, S. T. (2000) Transcriptional Regulation in Eukaryotes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  12. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  13. Imbalzano, A. N., Kwon, H., Green, M. R., and Kingston, R. E. (1994) Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370, 481–485.

    Article  PubMed  CAS  Google Scholar 

  14. Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E., and Green, M. R. (1994) Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481.

    Article  PubMed  CAS  Google Scholar 

  15. Wang, W., Cote, J., Xue, Y., Zhou, S., Khavari, P. A., Biggar, S. R., Muchardt, C., Kalpana, G. V., Goff, S. P., Yaniv, M., Workman, J. L., and Crabtree, G. R. (1996) Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J 15, 5370–5382.

    PubMed  CAS  Google Scholar 

  16. de La Serna, I. L., Carlson, K. A., Hill, D. A., Guidi, C. J., Stephenson, R. O., Sif, S., Kingston, R. E., and Imbalzano, A. N. (2000) Mammalian SWI-SNF complexes contribute to activation of the hsp70 gene. Mol Cell Biol 20, 2839–2851.

    Article  Google Scholar 

  17. Sif, S., Saurin, A. J., Imbalzano, A. N., and Kingston, R. E. (2001) Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev 15, 603–618.

    Article  PubMed  CAS  Google Scholar 

  18. Davis, R. L., Weintraub, H., and Lassar, A. B. (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000.

    Article  PubMed  CAS  Google Scholar 

  19. Ohkawa, Y., Marfella, C. G., and Imbalzano, A. N. (2006) Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1. EMBO J 25, 490–501.

    Article  PubMed  CAS  Google Scholar 

  20. de la Serna, I. L., Ohkawa, Y., Berkes, C. A., Bergstrom, D. A., Dacwag, C. S., Tapscott, S. J., and Imbalzano, A. N. (2005) MyoD ­targets chromatin remodeling complexes to the ­myogenin locus prior to forming a stable DNA-bound complex. Mol Cell Biol 25, 3997–4009.

    Article  PubMed  Google Scholar 

  21. de la Serna, I. L., Carlson, K. A., and Imbalzano, A. N. (2001) Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet 27, 187–190.

    Article  PubMed  Google Scholar 

  22. Mallappa, C., Nasipak, B. T., Etheridge, L., Androphy, E. J., Jones, S. N., Sagerstrom, C. G., Ohkawa, Y., and Imbalzano, A. N. (2010) Myogenic microRNA expression requires ATP-dependent chromatin remodeling enzyme function. Mol Cell Biol 30, 3176–3186.

    Article  PubMed  CAS  Google Scholar 

  23. Ohkawa, Y., Yoshimura, S., Higashi, C., Marfella, C. G., Dacwag, C. S., Tachibana, T., and Imbalzano, A. N. (2007) Myogenin and the SWI/SNF ATPase Brg1 maintain myogenic gene expression at different stages of skeletal myogenesis. J Biol Chem 282, 6564–6570.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. Baron for assistance with the figures. This work was supported by NIH grant GM56244 to ANI and by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan to YO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony N. Imbalzano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ohkawa, Y., Mallappa, C., Vallaster, C.S.D., Imbalzano, A.N. (2012). An Improved Restriction Enzyme Accessibility Assay for Analyzing Changes in Chromatin Structure in Samples of Limited Cell Number. In: DiMario, J. (eds) Myogenesis. Methods in Molecular Biology, vol 798. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-343-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-343-1_32

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-342-4

  • Online ISBN: 978-1-61779-343-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics