Skip to main content
Book cover

Myogenesis pp 445–459Cite as

Analysis of Fiber-Type Differences in Reporter Gene Expression of β-Gal Transgenic Muscle

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 798))

Abstract

β-galactosidase (β-gal) is among the most frequently used markers for studying a wide variety of biological mechanisms, e.g., gene expression, cell migration, stem cell conversion to different cell types, and gene silencing. Many of these studies require the histochemical detection of relative β-gal levels in tissue cross-sections mounted onto glass slides and visualized by microscopy. This is particularly useful for the analysis of promoter activity in skeletal muscle tissue since the β-gal levels can vary dramatically between different anatomical muscles and myofiber types. The differences in promoter activity can be due to a myofiber’s developmental history, innervation, response to normal or experimental physiological signals, and its disease state. It is thus important to identify the individual fiber types within muscle cross-sections and to correlate these with transgene expression signals. Here, we provide a detailed description of how to process and analyze muscle tissues to determine the fiber-type composition and β-gal transgene expression within cryosections.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rosenthal, N. (1987). Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol 152, 704–20.

    Article  PubMed  CAS  Google Scholar 

  2. Friedrich, G., and Soriano, P. (1991). Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5, 1513–23.

    Article  PubMed  CAS  Google Scholar 

  3. Hauser, M. A., Robinson, A., Hartigan-O’Connor, D., Williams-Gregory, D. A., Buskin, J. N., Apone, S., Kirk, C. J., Hardy, S., Hauschka, S. D., and Chamberlain, J. S. (2000). Analysis of muscle creatine kinase regulatory elements in recombinant adenoviral vectors. Mol Ther 2, 16–25.

    Article  PubMed  CAS  Google Scholar 

  4. Gregorevic, P., and Chamberlain, J. S. (2005). Functional enhancement of skeletal muscle by gene transfer. Phys Med Rehabil Clin N Am 16, 875–87, vii-viii.

    Google Scholar 

  5. Fan, Q., Yee, C. L., Ohyama, M., Tock, C., Zhang, G., Darling, T. N., and Vogel, J. C. (2006). Bone marrow-derived keratinocytes are not detected in normal skin and only rarely detected in wounded skin in two different murine models. Exp Hematol 34, 672–9.

    Article  PubMed  CAS  Google Scholar 

  6. Badea, T. C., Hua, Z. L., Smallwood, P. M., Williams, J., Rotolo, T., Ye, X., and Nathans, J. (2009). New mouse lines for the analysis of neuronal morphology using CreER(T)/loxP-directed sparse labeling. PLoS One 4, e7859.

    Article  PubMed  Google Scholar 

  7. Yamashita, K., and Yoshioka, T. (1991). Profiles of creatine kinase isoenzyme compositions in single muscle fibres of different types. J Muscle Res Cell Motil 12, 37–44.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson, J. E., Wold, B. J., and Hauschka, S. D. (1989). Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol Cell Biol 9, 3393–9.

    PubMed  CAS  Google Scholar 

  9. LaFramboise, W. A., Guthrie, R. D., Scalise, D., Elborne, V., Bombach, K. L., Armanious, C. S., and Magovern, J. A. (2003). Effect of muscle origin and phenotype on satellite cell muscle-specific gene expression. J Mol Cell Cardiol 35, 1307–18.

    Article  PubMed  CAS  Google Scholar 

  10. Scott, W., Stevens, J., and Binder-Macleod, S. A. (2001). Human skeletal muscle fiber type classifications. Phys Ther 81, 1810–6.

    PubMed  CAS  Google Scholar 

  11. Larsson, L., Edstrom, L., Lindegren, B., Gorza, L., and Schiaffino, S. (1991). MHC composition and enzyme-histochemical and physiological properties of a novel fast-twitch motor unit type. Am J Physiol 261, C93–101.

    PubMed  CAS  Google Scholar 

  12. Zierath, J. R., and Hawley, J. A. (2004). Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2, e348.

    Article  PubMed  Google Scholar 

  13. Gregorevic, P., Meznarich, N. A., Blankinship, M. J., Crawford, R. W., and Chamberlain, J. S. (2008). Fluorophore-labeled myosin-specific antibodies simplify muscle-fiber phenotyping. Muscle Nerve 37, 104–6.

    Article  PubMed  Google Scholar 

  14. Schiaffino, S., Gorza, L., Sartore, S., Saggin, L., Ausoni, S., Vianello, M., Gundersen, K., and Lomo, T. (1989). Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10, 197–205.

    Article  PubMed  CAS  Google Scholar 

  15. Gorza, L. (1990). Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. J Histochem Cytochem 38, 257–65.

    Article  PubMed  CAS  Google Scholar 

  16. Sokoloff, A. J., Yang, B., Li, H., and Burkholder, T. J. (2007). Immunohistochemical characterization of slow and fast myosin heavy chain composition of muscle fibres in the styloglossus muscle of the human and macaque (Macaca rhesus). Arch Oral Biol 52, 533–43.

    Article  PubMed  CAS  Google Scholar 

  17. Town, S. C., Putman, C. T., Turchinsky, N. J., Dixon, W. T., and Foxcroft, G. R. (2004). Number of conceptuses in utero affects porcine fetal muscle development. Reproduction 128, 443–54.

    Article  PubMed  CAS  Google Scholar 

  18. Zambrowicz, B. P., Imamoto, A., Fiering, S., Herzenberg, L. A., Kerr, W. G., and Soriano, P. (1997). Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci USA 94, 3789–94.

    Article  PubMed  CAS  Google Scholar 

  19. Hauser, M. A., Amalfitano, A., Kumar-Singh, R., Hauschka, S. D., and Chamberlain, J. S. (1997). Improved adenoviral vectors for gene therapy of Duchenne muscular dystrophy. Neuromuscul Disord 7, 277–83.

    Article  PubMed  CAS  Google Scholar 

  20. Yu, J., and McMahon, A. P. (2006). Reproducible and inducible knockdown of gene expression in mice. Genesis 44, 252–61.

    Article  PubMed  CAS  Google Scholar 

  21. Kanzler, B., Haas-Assenbaum, A., Haas, I., Morawiec, L., Huber, E., and Boehm, T. (2003). Morpholino oligonucleotide-triggered knockdown reveals a role for maternal E-cadherin during early mouse development. Mech Dev 120, 1423–32.

    Article  PubMed  CAS  Google Scholar 

  22. Lucas, C. A., Kang, L. H., and Hoh, J. F. (2000). Monospecific antibodies against the three mammalian fast limb myosin heavy chains. Biochem Biophys Res Commun 272, 303–8.

    Article  PubMed  CAS  Google Scholar 

  23. Tai, P. W., Fisher-Aylor, K. I., Himeda, C. L., Smith, C. L., Mackenzie, A. P., Helterline, D. L., Angello, J. C., Welikson, R. E., Wold, B. J., and Hauschka, S. D. (2011). Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer. Skelet Muscle 1, 25.

    Google Scholar 

Download references

Acknowledgments

Miki Haraguchi and Paul Gregorevic are thanked for their initial technical assistance and very helpful advice; Joel R. Chamberlain is thanked for providing a ROSA26 mouse; and Robert E. Welikson, Charis L. Himeda, and Joel R. Chamberlain are thanked for their critical comments on earlier versions of the manuscript. This research was supported by grants from the NIH RO1-AR18860 and 1P01-NS046788 to SDH and by an NIH Developmental Biology Training Grant 5732-HD07183 to PWLT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Hauschka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tai, P.W.L., Smith, C.L., Angello, J.C., Hauschka, S.D. (2012). Analysis of Fiber-Type Differences in Reporter Gene Expression of β-Gal Transgenic Muscle. In: DiMario, J. (eds) Myogenesis. Methods in Molecular Biology, vol 798. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-343-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-343-1_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-342-4

  • Online ISBN: 978-1-61779-343-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics